• Title/Summary/Keyword: Local Image Processing

Search Result 512, Processing Time 0.034 seconds

Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.719-722
    • /
    • 2019
  • Gamma-ray images generally suffer from a lot of noise because of low photon detection in the gamma camera system. The purpose of this study is to improve the image quality in gamma-ray images using a gamma camera system with a fast nonlocal means (FNLM) noise reduction algorithm with an acceleration function. The designed FNLM algorithm is based on local region considerations, including the Euclidean distance in the gamma-ray image and use of the encoded information. To evaluate the noise characteristics, the normalized noise power spectrum (NNPS), contrast-to-noise ratio (CNR), and coefficient of variation (COV) were used. According to the NNPS result, the lowest values can be obtained using the FNLM noise reduction algorithm. In addition, when the conventional methods and the FNLM noise reduction algorithm were compared, the average CNR and COV using the proposed algorithm were approximately 2.23 and 7.95 times better than those of the noisy image, respectively. In particular, the image-processing time of the FNLM noise reduction algorithm can achieve the fastest time compared with conventional noise reduction methods. The results of the image qualities related to noise characteristics demonstrated the superiority of the proposed FNLM noise reduction algorithm in a gamma camera system.

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

Automatic Crack Detection on Pressed Panels Using Camera Image Processing with Local Amplitude Mapping (카메라 이미지 처리를 통한 프레스 패널의 크랙결함 검출)

  • Lee, Chang Won;Jung, Hwee Kwon;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2016
  • Crack detection on panels during manufacturing process is an important step for ensuring the product quality. The accuracy and efficiency of traditional crack detection methods, which are performed by eye inspection, are dependent on human inspectors. Therefore, implementation of an on-line and precise crack detection is required during the panel pressing process. In this paper, a regular CCTV camera system is utilized to obtain images of panel products and an image process based crack detection technique is developed. This technique uses a comparison between the base image and a test image using an amplitude mapping of the local image. Experiments are performed in the laboratory and in the actual manufacturing lines to evaluate the performance of the developed technique. Experimental results indicate that the proposed technique could be used to effectively detect a crack on panels with high speed.

Image Restoration Algorithm based on Segmented Mask and Standard Deviation in Impulse Noise Environment (임펄스 잡음 환경에서 분할 마스크와 표준편차에 기반한 영상 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Woo-Young;Sagong, Byung-Il;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1039-1045
    • /
    • 2021
  • In modern society, due to the influence of the 4th industrial revolution, camera sensors and image-based automation systems are being used in various fields, and interest in image and signal processing is increasing. In this paper, we propose a digital filter algorithm for image reconstruction in an impulse noise environment. The proposed algorithm divides the image into eight masks in vertical, horizontal, and diagonal directions based on the local mask set in the image, and compares the standard deviation of each segmentation mask to obtain a reference value. The final output is calculated by applying the weight according to the spatial distance and the weight using the reference value to the local mask. To evaluate the performance of the proposed algorithm, it was simulated with the existing algorithm, and the performance was compared using enlarged images and PSNR.

A Study on the Internet Broadcasting Image Processing based on Offloading Technique on the Mobile Environments (모바일 환경에서 오프로딩 기술 기반 인터넷 방송 영상 처리에 관한 연구)

  • Kang, Hong-gue
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.63-68
    • /
    • 2018
  • Offloading is a method of communicating, processing, and receiving results from some of the applications performed on local computers to overcome the limitations of computing resources and computational speed.Recently, it has been applied in mobile games, multimedia data, 360-degree video processing, and image processing for Internet broadcasting to speed up processing and reduce battery consumption in the mobile computing sector. This paper implements a viewer that enables users to convert various flat-panel images and view contents in a wireless Internet environment and presents actual results of an experiment so that users can easily understand the images. The 360 degree spherical image is successfully converted to a plane image with Double Panorama, Quad, Single Rectangle, 360 Overview + 3 Rectangle depending on the image acquisition position of the 360 degree camera through the interface. During the experiment, more than 100 360 degree spherical images were successfully converted into plane images through the interface below.

Adaptive image enhancement technique considering visual perception property in digital chest radiography (시각특성을 고려한 디지털 흉부 X-선 영상의 적응적 향상기법)

  • 김종효;이충웅;민병구;한만청
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.160-171
    • /
    • 1994
  • The wide dynamic range and severely attenuated contrast in mediastinal area appearing in typical chest radiographs have often caused difficulties in effective visualization and diagnosis of lung diseases. This paper proposes a new adaptive image enhancement technique which potentially solves this problem and there by improves observer performance through image processing. In the proposed method image processing is applied to the chest radiograph with different processing parameters for the lung field and mediastinum adaptively since there are much differences in anatomical and imaging properties between these two regions. To achieve this the chest radiograph is divided into the lung and mediastinum by gray level thresholding using the cumulative histogram and the dynamic range compression and local contrast enhancement are carried out selectively in the mediastinal region. Thereafter a gray scale transformation is performed considering the JND(just noticeable difference) characteristic for effective image displa. The processed images showed apparenty improved contrast in mediastinum and maintained moderate brightness in the lung field. No artifact could be observed. In the visibility evaluation experiment with 5 radiologists the processed images with better visibility was observed for the 5 important anatomical structures in the thorax.

  • PDF

GLIBP: Gradual Locality Integration of Binary Patterns for Scene Images Retrieval

  • Bougueroua, Salah;Boucheham, Bachir
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.469-486
    • /
    • 2018
  • We propose an enhanced version of the local binary pattern (LBP) operator for texture extraction in images in the context of image retrieval. The novelty of our proposal is based on the observation that the LBP exploits only the lowest kind of local information through the global histogram. However, such global Histograms reflect only the statistical distribution of the various LBP codes in the image. The block based LBP, which uses local histograms of the LBP, was one of few tentative to catch higher level textural information. We believe that important local and useful information in between the two levels is just ignored by the two schemas. The newly developed method: gradual locality integration of binary patterns (GLIBP) is a novel attempt to catch as much local information as possible, in a gradual fashion. Indeed, GLIBP aggregates the texture features present in grayscale images extracted by LBP through a complex structure. The used framework is comprised of a multitude of ellipse-shaped regions that are arranged in circular-concentric forms of increasing size. The framework of ellipses is in fact derived from a simple parameterized generator. In addition, the elliptic forms allow targeting texture directionality, which is a very useful property in texture characterization. In addition, the general framework of ellipses allows for taking into account the spatial information (specifically rotation). The effectiveness of GLIBP was investigated on the Corel-1K (Wang) dataset. It was also compared to published works including the very effective DLEP. Results show significant higher or comparable performance of GLIBP with regard to the other methods, which qualifies it as a good tool for scene images retrieval.

Oil Spill Detection from RADARSAT-2 SAR Image Using Non-Local Means Filter

  • Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • The detection of oil spills using radar image has been studied extensively. However, most of the proposed techniques have been focused on improving detection accuracy through the advancement of algorithms. In this study, research has been conducted to improve the accuracy of oil spill detection by improving the quality of radar images, which are used as input data to detect oil spills. Thresholding algorithms were used to measure the image improvement both before and after processing. The overall accuracy increased by approximately 16%, the producer accuracy increased by 40%, and the user accuracy increased by 1.5%. The kappa coefficient also increased significantly, from 0.48 to 0.92.

Selective coding scheme using global/local motion information (전역/지역 움직임 정보를 이용한 선택적 부호화 기법)

  • 이종배;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.834-847
    • /
    • 1996
  • A selective coding scheme is proposed that describes a method for coding image sequences distinguishing bits between background and target region. The suggested method initially estimates global motion parameters and local motion vectors. Then segmentation is performed with a hierarchical clustering scheme and a quadtree algorithm in order to divide the processing image into the backgraound and target region. Finally image coding is done by assigning more bits to the target region and less bits to background so that the target region may be reconstructed with high quality. Simulations show that the suggested algorithm performs well especially in the circumstances where background changes and target regionis small enough compared with that of background.

  • PDF

Exact Histogram Specification Considering the Just Noticeable Difference

  • Jung, Seung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.