• Title/Summary/Keyword: Local Differential Privacy (LDP)

Search Result 5, Processing Time 0.024 seconds

Privacy-Preserving Traffic Volume Estimation by Leveraging Local Differential Privacy

  • Oh, Yang-Taek;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.19-27
    • /
    • 2021
  • In this paper, we present a method for effectively predicting traffic volume based on vehicle location data that are collected by using LDP (Local Differential Privacy). The proposed solution in this paper consists of two phases: the process of collecting vehicle location data in a privacy-presering manner and the process of predicting traffic volume using the collected location data. In the first phase, the vehicle's location data is collected by using LDP to prevent privacy issues that may arise during the data collection process. LDP adds random noise to the original data when collecting data to prevent the data owner's sensitive information from being exposed to the outside. This allows the collection of vehicle location data, while preserving the driver's privacy. In the second phase, the traffic volume is predicted by applying deep learning techniques to the data collected in the first stage. Experimental results with real data sets demonstrate that the method proposed in this paper can effectively predict the traffic volume using the location data that are collected in a privacy-preserving manner.

Development of Simulation Tool to Support Privacy-Preserving Data Collection (프라이버시 보존 데이터 수집을 지원하기 위한 시뮬레이션 툴 개발)

  • Kim, Dae-Ho;Kim, Jong Wook
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1671-1676
    • /
    • 2017
  • In theses days, data has been explosively generated in diverse industrial areas. Accordingly, many industries want to collect and analyze these data to improve their products or services. However, collecting user data can lead to significant personal information leakage. Local differential privacy (LDP) proposed by Google is the state-of-the-art approach that is used to protect individual privacy in the process of data collection. LDP guarantees that the privacy of the user is protected by perturbing the original data at the user's side, but a data collector is still able to obtain population statistics from collected user data. However, the prevention of leakage of personal information through such data perturbation mechanism may cause the significant reduction in the data utilization. Therefore, the degree of data perturbation in LDP should be set properly depending on the data collection and analysis purposes. Thus, in this paper, we develop the simulation tool which aims to help the data collector to properly chose the degree of data perturbation in LDP by providing her/him visualized simulated results with various parameter configurations.

Clustering-Based Federated Learning for Enhancing Data Privacy in Internet of Vehicles

  • Zilong Jin;Jin Wang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1462-1477
    • /
    • 2024
  • With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.

Privacy-Preserving IoT Data Collection in Fog-Cloud Computing Environment

  • Lim, Jong-Hyun;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.43-49
    • /
    • 2019
  • Today, with the development of the internet of things, wearable devices related to personal health care have become widespread. Various global information and communication technology companies are developing various wearable health devices, which can collect personal health information such as heart rate, steps, and calories, using sensors built into the device. However, since individual health data includes sensitive information, the collection of irrelevant health data can lead to personal privacy issue. Therefore, there is a growing need to develop technology for collecting sensitive health data from wearable health devices, while preserving privacy. In recent years, local differential privacy (LDP), which enables sensitive data collection while preserving privacy, has attracted much attention. In this paper, we develop a technology for collecting vast amount of health data from a smartwatch device, which is one of popular wearable health devices, using local difference privacy. Experiment results with real data show that the proposed method is able to effectively collect sensitive health data from smartwatch users, while preserving privacy.

Collecting Health Data from Wearable Devices by Leveraging Salient Features in a Privacy-Preserving Manner

  • Moon, Su-Mee;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • With the development of wearable devices, individuals' health status can be checked in real time and risks can be predicted. For example, an application has been developed to detect an emergency situation of a patient with heart disease and contact a guardian through analysis of health data such as heart rate and electrocardiogram. However, health data is seriously damaging when it is leaked as it relates to life. Therefore, a method to protect personal information is essential in collecting health data, and this study proposes a method of collecting data while protecting the personal information of the data owner through a LDP(Local Differential Privacy). The previous study introduced a technique of transmitting feature point data rather than all data to a data collector as an algorithm for searching for fixed k feature points. Next, this study will explain how to improve the performance by up to 75% using an algorithm that finds the optimal number of feature points k.