• 제목/요약/키워드: Local Binary Patterns (LBP)

검색결과 33건 처리시간 0.029초

움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적 (Object Tracking Using Particle Filters in Moving Camera)

  • 고병철;남재열;곽준영
    • 한국통신학회논문지
    • /
    • 제37권5A호
    • /
    • pp.375-387
    • /
    • 2012
  • 본 연구에서는 움직이는 CCD 카메라로부터 입력된 영상에서 색상 및 질감 성분을 기반으로 하는 파티클 필터를 이용하여 실시간으로 객체를 추적할 수 있는 알고리즘을 제안한다. 초기 영상에서 추적하고자 하는 객체를 선택하면 이를 타깃 파티클로 결정하고, 타깃 파티클로 부터 추적을 위한 초기 상태가 모델링 된다. 이후 프레임부터 N개의 파티클들이 랜덤 분포로 생성되고 각 파티클로 부터 질감 정보인 로컬 CS-LBP (Centre Symmetric Local Binary Patterns)모델과 색상 분포 모델이 특징 모델로 사용된다. 각 특징 모델에 대해 바타차리야 (Bhattacharyya) 거리를 사용하여 각 파티클과 타깃 파티클 간의 특징 관측 우도(likelihood)를 구하고 이를 각 파티클의 가중치로 설정 한다. 각 파티클의 가중치를 기반으로 가중치가 가장 높은 파티클을 새로운 타깃으로 설정하고, 각 파티클들을 재 샘플링 한다. 본 실험결과에서는 여러 가지 특징을 조합하여 실험을 하였고, 그 결과 색상 분포 모델과 로컬 CS-LBP를 조합했을 때 추적 성능이 가장 우수한 것을 확인할 수 있었다.

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.

얼굴 표정 인식을 위한 방향성 LBP 특징과 분별 영역 학습 (Learning Directional LBP Features and Discriminative Feature Regions for Facial Expression Recognition)

  • 강현우;임길택;원철호
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.748-757
    • /
    • 2017
  • In order to recognize the facial expressions, good features that can express the facial expressions are essential. It is also essential to find the characteristic areas where facial expressions appear discriminatively. In this study, we propose a directional LBP feature for facial expression recognition and a method of finding directional LBP operation and feature region for facial expression classification. The proposed directional LBP features to characterize facial fine micro-patterns are defined by LBP operation factors (direction and size of operation mask) and feature regions through AdaBoost learning. The facial expression classifier is implemented as a SVM classifier based on learned discriminant region and directional LBP operation factors. In order to verify the validity of the proposed method, facial expression recognition performance was measured in terms of accuracy, sensitivity, and specificity. Experimental results show that the proposed directional LBP and its learning method are useful for facial expression recognition.

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

A novel approach of ship wakes target classification based on the LBP-IBPANN algorithm

  • Bo, Liu;Yan, Lin;Liang, Zhang
    • Ocean Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.53-62
    • /
    • 2014
  • The detection of ship wakes image can demonstrate substantial information regarding on a ship, such as its tonnage, type, direction, and speed of movement. Consequently, the wake target recognition is a favorable way for ship identification. This paper proposes a Local Binary Pattern (LBP) approach to extract image features (wakes) for training an Improved Back Propagation Artificial Neural Network (IBPANN) to identify ship speed. This method is applied to sort and recognize the ship wakes of five different speeds images, the result shows that the detection accuracy is satisfied as expected, the average correctness rates of wakes target recognition at the five speeds may be achieved over 80%. Specifically, the lower ship's speed, the better accurate rate, sometimes it's accuracy could be close to 100%. In addition, one significant feature of this method is that it can receive a higher recognition rate than the nearest neighbor classification method.

패치 기반 영상처리를 위한 텍스쳐 분류 알고리즘 (Texture Classification Algorithm for Patch-based Image Processing)

  • 유승완;송병철
    • 전자공학회논문지
    • /
    • 제51권11호
    • /
    • pp.146-154
    • /
    • 2014
  • 텍스쳐 분류에 사용되는 방식 중 하나인 지역적 이진화 패턴은 일반적으로 영상 내의 평탄한 부분, 에지, 코너의 분포를 사용한다. 그러나 영상이 가지는 방향성을 고려하지 않고, 단순히 크고 작음만을 비교하는 지역적 이진화 패턴의 특성때문에 화소간 차이를 반영하지 못하는 문제점이 있다. 또한 영상의 분포를 사용하기 때문에 작은 크기의 영상에 대해서는 분류 성능이 저하된다. 이런 문제를 해결하기 위해 본 논문에서는 영상의 방향성 분포와 고유치 행렬을 이용한 세부 분류 기법을 제안한다. 지역적 이진화 패턴으로 초기 분류에서 누락된 텍스쳐 영상에 대하여 두 가지 특징을 이용하여 세부적으로 분류한다. 첫째, 영상이 가질 수 있는 방향을 여덟 가지로 양자화하고 그 방향들의 분포를 계산한다. 둘째, 구조 행렬을 이용하여 나온 고유치 중 큰 값의 분포를 구한다. 모의 실험을 통해 지역적 이진화 패턴만을 사용하였을 때 대비 제안 방법이 약 8% 정도 분류 정확도가 향상됨을 보였다.

Plants Disease Phenotyping using Quinary Patterns as Texture Descriptor

  • Ahmad, Wakeel;Shah, S.M. Adnan;Irtaza, Aun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3312-3327
    • /
    • 2020
  • Plant diseases are a significant yield and quality constraint for farmers around the world due to their severe impact on agricultural productivity. Such losses can have a substantial impact on the economy which causes a reduction in farmer's income and higher prices for consumers. Further, it may also result in a severe shortage of food ensuing violent hunger and starvation, especially, in less-developed countries where access to disease prevention methods is limited. This research presents an investigation of Directional Local Quinary Patterns (DLQP) as a feature descriptor for plants leaf disease detection and Support Vector Machine (SVM) as a classifier. The DLQP as a feature descriptor is specifically the first time being used for disease detection in horticulture. DLQP provides directional edge information attending the reference pixel with its neighboring pixel value by involving computation of their grey-level difference based on quinary value (-2, -1, 0, 1, 2) in 0°, 45°, 90°, and 135° directions of selected window of plant leaf image. To assess the robustness of DLQP as a texture descriptor we used a research-oriented Plant Village dataset of Tomato plant (3,900 leaf images) comprising of 6 diseased classes, Potato plant (1,526 leaf images) and Apple plant (2,600 leaf images) comprising of 3 diseased classes. The accuracies of 95.6%, 96.2% and 97.8% for the above-mentioned crops, respectively, were achieved which are higher in comparison with classification on the same dataset using other standard feature descriptors like Local Binary Pattern (LBP) and Local Ternary Patterns (LTP). Further, the effectiveness of the proposed method is proven by comparing it with existing algorithms for plant disease phenotyping.

국부 이진패턴 히스토그램을 이용한 장문인식 (Palmprint Verification Using the Histogram of Local Binary Patterns)

  • 김민기
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권10호
    • /
    • pp.27-34
    • /
    • 2010
  • 본 논문은 물리적 제약이 없는 자연스러운 인터페이스에서 획득한 장문영상을 효과적으로 인식하는 방법을 제안한다. 손의 위치 이동이나 회전으로 인하여 손바닥 영상에서 관심영역의 위치나 방향이 다양하게 나타나므로, 장문인식을 위해서는 안정적인 관심영역 추출이 필요하다. 본 논문은 검지와 중지, 소지와 약지 사이의 손 가랑이 구간의 중심점을 기준으로 관심영역을 추출하는 방법을 제시하고, 국부 이진패턴 히스토그램을 이용한 장문인식 방법을 제안한다. 제안된 방법의 성능을 측정하기 위하여 100인으로부터 획득한 총 1,597개의 장문영상을 대상으로 실험을 수행하였다. 실험 결과 ROI 추출 성공률이 99.5%였고, 장문인식 성능을 보여주는 동일오류율과 결정계수 d'를 측정한 결과 각각 0.136, 3.539를 보였다. 이러한 결과는 제안된 방법이 손의 위치나 회전 변형에 강인함을 나타낸다.

Bag-of-Feature 특징과 랜덤 포리스트를 이용한 의료영상 검색 기법 (Medical Image Retrieval using Bag-of-Feature and Random Forest Classifier)

  • 손정은;곽준영;고병철;남재열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.601-603
    • /
    • 2012
  • 본 논문에서는 의료영상의 특성을 반영하여 영상의 그래디언트 방향 값을 특징으로 하는 Oriented Center Symmetric Local Binary Patterns (OCS-LBP) 특징을 개발하고 추출된 특징 값에 대해 차원을 줄이고 의미 있는 특징 단위로 재 생성하기 위해 Bag-of-Feature (BoF)를 적용하였다. 검색을 위해서는 기존의 영상 검색 방법과는 다르게, 학습 영상을 이용하여 랜덤 포리스트 (Random Forest)를 사전에 학습시켜 데이터베이스 영상을 N 개의 클래스로 자동 분류 시키고, 질의로 입력된 영상을 같은 방법으로 랜덤 포리스트에 적용하여 상위 확률 값을 갖는 2 개의 클래스에서만 K-nearest neighbor 방법으로 유사 영상을 검색결과로 제시하는 새로운 영상검색 방법을 제시하였다. 실험결과에서 본 논문의 우수성을 증명하기 위해 일반적인 유사성 측정 방법과 랜덤 포리스트를 이용한 방법의 검색 성능 및 시간을 비교하였고, 검색 성능과 시간 면에서 상대적으로 매우 우수한 성능을 보여줌을 증명하였다.

Random Forests와 관계 가중치 결합을 이용한 의료 영상 분류 및 주석 자동 생성 (Medical Image Classification and Keyword Annotation Using Combination of Random Forests and Relation Weight)

  • 이지현;김성훈;고병철;남재열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.596-598
    • /
    • 2010
  • 본 논문에서는 의료영상 중 X-ray 영상을 대상으로 영상을 분류하고 분류 결과에 따라 다중 키워드를 생성하는 방법을 제시한다. X-ray영상은 대부분 그레이 영상임으로 Local Binary Patterns (LBP)을 이용하여 픽셀간의 연관성을 특징으로 추출하고, 실시간 학습 및 분류가 가능한 Random Forests 분류기로 영상들을 30개의 클래스로 분류한다. 또한, 미리 정의된 신체 부위간의 관계 가중치를 분류 스코어에 결합하여 신뢰값을 생성하고 이를 기반으로 영상에 대해 다중 주석을 부여하게 된다. 이렇게 부여된 다중 주석은 키워드 기반의 의료영상을 가능케 함으로 보다 쉽고 효율적인 검색 환경을 제공할 수 있다.