• Title/Summary/Keyword: Local Binary Pattern, LBP

Search Result 76, Processing Time 0.025 seconds

Face Image Analysis using Adaboost Learning and Non-Square Differential LBP (아다부스트 학습과 비정방형 Differential LBP를 이용한 얼굴영상 특징분석)

  • Lim, Kil-Taek;Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1014-1023
    • /
    • 2016
  • In this study, we presented a method for non-square Differential LBP operation that can well describe the micro pattern in the horizontal and vertical component. We proposed a way to represent a LBP operation with various direction components as well as the diagonal component. In order to verify the validity of the proposed operation, Differential LBP was investigated with respect to accuracy, sensitivity, and specificity for the classification of facial expression. In accuracy comparison proposed LBP operation obtains better results than Square LBP and LBP-CS operations. Also, Proposed Differential LBP gets better results than previous two methods in the sensitivity and specificity indicators 'Neutral', 'Happiness', 'Surprise', and 'Anger' and excellence Differential LBP was confirmed.

Automatic Colorectal Polyp Detection in Colonoscopy Video Frames

  • Geetha, K;Rajan, C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4869-4873
    • /
    • 2016
  • Colonoscopy is currently the best technique available for the detection of colon cancer or colorectal polyps or other precursor lesions. Computer aided detection (CAD) is based on very complex pattern recognition. Local binary patterns (LBPs) are strong illumination invariant texture primitives. Histograms of binary patterns computed across regions are used to describe textures. Every pixel is contrasted relative to gray levels of neighbourhood pixels. In this study, colorectal polyp detection was performed with colonoscopy video frames, with classification via J48 and Fuzzy. Features such as color, discrete cosine transform (DCT) and LBP were used in confirming the superiority of the proposed method in colorectal polyp detection. The performance was better than with other current methods.

Hardware Design of LBP Operation for Real-time Face Detection of HD Images (HD 영상의 실시간 얼굴 검출을 위한 LBP 연산의 하드웨어 설계)

  • Noh, Hyun-Jin;Kim, Tae-Wan;Chung, Yum-Mo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.67-71
    • /
    • 2011
  • Existing face detection systems, which are used for digital door locks, digital cameras, video surveillance systems, and so on, are software-based implementation for relatively low level resolution images. Therefore, in this case, there are difficulties in detecting faces in a real-time fashion due to the increasing amount of operational processing as well as in allowing the requirements of face detections for HD(High Definition) resolutions. A hardware approach is necessary to efficiently find faces for HD images in real-time embedded systems. This paper proposes and implements a hardware architecture for an LBP(Local Binary Pattern) operation which is a time-consuming part as one of preprocessing steps for face detection. The hardware architecture proposed in this research has been implemented and tested with a FPGA(Field Programmable Gate Array) chip, and shown that the approach guarantees efficient face detection for HD images.

Object Recognition Using Local Binary Pattern Based on Confidence Measure (신뢰 척도 기반 지역 이진 패턴을 이용한 객체 인식)

  • Yonggeol Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.126-132
    • /
    • 2023
  • Object recognition is a technology that detects and identifies various objects in images and videos. LBP is a descriptor that operates robustly to illumination variations and is actively used in object recognition. LBP considers the range of neighboring pixels, the order of combining the neighbors after the comparison operation, and the starting position of combining. In particular, the starting position of the LBP becomes the "most significant bit"; it dramatically affects the performance of object recognition. In this paper, based on the N starting positions, the data most similar to the input data are searched in each of the N feature spaces. Object recognition is performed by the confidence measure that can compare different results of each feature space under the same criterion and select the most reliable result. In the experimental results, it was confirmed that there is a difference in performance depending on the starting position of LBP. The proposed method showed a high performance of up to 12.66% compared to the recognition performance of the existing LBP.

A 2-D Barcode Detection Algorithm based on Local Binary Patterns (지역적 이진패턴을 이용한 2차원 바코드 검출 알고리즘)

  • Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • To increase the data capacity of one-dimensional symbology, 2D barcodes have been proposed a decade ago. In this paper, a new 2D barcode detection algorithm based on Local Binary Pattern is presented. To locate 2D barcode symbols, a texture analysis scheme based on the Local Binary Pattern is adopted, and a gray-scale projection with sub-pixel operation is utilized to separate the symbol precisely from the input image. Finally, the segmented symbol is normalized using the inverse perspective transformation for the decoding process. The proposed method ensures high performances under various lighting/printing conditions and strong perspective deformations. Experiments show that our method is very robust and efficient in detecting the symbol area for the various types of 2D barcodes.

  • PDF

An Improved Face Detection Method Using a Hybrid of Hausdorff and LBP Distance (Hausdorff와 LBP 거리의 융합을 이용한 개선된 얼굴검출)

  • Park, Seong-Chun;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, a new face detection method that is more accurate than the conventional methods is proposed. This method utilizes a hybrid of Hausdorff distance based on the geometric similarity between the two sets of points and the LBP distance based on the distribution of local micro texture of an image. The parameters for normalization and the optimal blending factor of the two different metrics were calculated from training sample images. Popularly used face database was used to show that the proposed method is more effective and robust to the variation of the pose, illumination, and back ground than the methods based on the Hausdorff distance or LBP distance. In the particular case, the average error distance between the detected and the true face location was reduced to 47.9% of the result of LBP method, and 22.8% of the result of Hausdorff method.

Local Binary Pattern Based Defocus Blur Detection Using Adaptive Threshold

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.7-11
    • /
    • 2020
  • Enormous methods have been proposed for the detection and segmentation of blur and non-blur regions of the images. Due to the limited available information about the blur type, scenario and the level of blurriness, detection and segmentation is a challenging task. Hence, the performance of the blur measure operators is an essential factor and needs improvement to attain perfection. In this paper, we propose an effective blur measure based on the local binary pattern (LBP) with the adaptive threshold for blur detection. The sharpness metric developed based on LBP uses a fixed threshold irrespective of the blur type and level which may not be suitable for images with large variations in imaging conditions and blur type and level. Contradictory, the proposed measure uses an adaptive threshold for each image based on the image and the blur properties to generate an improved sharpness metric. The adaptive threshold is computed based on the model learned through the support vector machine (SVM). The performance of the proposed method is evaluated using a well-known dataset and compared with five state-of-the-art methods. The comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all the methods.

Background Subtraction Algorithm by Using the Local Binary Pattern Based on Hexagonal Spatial Sampling (육각화소 기반의 지역적 이진패턴을 이용한 배경제거 알고리즘)

  • Choi, Young-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.533-542
    • /
    • 2008
  • Background subtraction from video data is one of the most important task in various realtime machine vision applications. In this paper, a new scheme for background subtraction based on the hexagonal pixel sampling is proposed. Generally it has been found that hexagonal spatial sampling yields smaller quantization errors and remarkably improves the understanding of connectivity. We try to apply the hexagonally sampled image to the LBP based non-parametric background subtraction algorithm. Our scheme makes it possible to omit the bilinear pixel interpolation step during the local binary pattern generation process, and, consequently, can reduce the computation time. Experimental results revealed that our approach based on hexagonal spatial sampling is very efficient and can be utilized in various background subtraction applications.

A Local Feature-Based Robust Approach for Facial Expression Recognition from Depth Video

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1390-1403
    • /
    • 2016
  • Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.

Face Detection for Interactive TV Control System in Near Infra-Red Images (인터랙티브 TV 컨트롤 시스템을 위한 근적외선 영상에서의 얼굴 검출)

  • Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.388-392
    • /
    • 2011
  • In this paper, a face detection method for interactive TV control system using a new feature, edge histogram feature, with a support vector machine(SVM) in the near-infrared(NIR) images is proposed. The edge histogram feature is extracted using 16-directional edge intensity and a histogram. Compared to the previous method using local binary pattern(LBP) feature, the proposed method using edge histogram feature has better performance in both smaller feature size and lower equal error rate(EER) for face detection experiments in NIR databases.