• Title/Summary/Keyword: Loading System

Search Result 3,328, Processing Time 0.03 seconds

Influence of bed joint orientation on interlocking grouted stabilised mud-flyash brick masonry under cyclic compressive loading

  • Nazar, Maqsud E.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.585-599
    • /
    • 2006
  • This paper describes a series of laboratory tests carried out to evaluate the influence of bed joint orientation on interlocking grouted stabilised mud-flyash brick masonry under uniaxial cyclic compressive loading. Five cases of loading at $0^{\circ}$, $22.5^{\circ}$, $45^{\circ}$, $67.5^{\circ}$ and $90^{\circ}$ with the bed joints were considered. The brick units and masonry system developed by Prof. S.N. Sinha were used in present investigation. Eighteen specimens of size $500mm{\times}100mm{\times}700mm$ and twenty seven specimens of size $500mm{\times}100mm{\times}500mm$ were tested. The envelope stress-strain curve, common point curve and stability point curve were established for all five cases of loading with respect to bed joints. A general analytical expression is proposed for these curves which fit reasonably well with the experimental data. Also, the stability point curve has been used to define the permissible stress level in the brick masonry.

A Case Study on the Dynamic Loading Tests of Large Diameter - Long Drilled Shafts into Weathered Rock (풍화암에 근입된 장대 현장타설말뚝의 동재하시험 사례연구)

  • Seok, Jeong-Woo;Cho, Chun-Whan;Ji, Wan-Goo;Park, Min-Cheul;Yoon, Jeoung-Seob
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.486-493
    • /
    • 2006
  • This paper deals with the procedure and the results on the dynamic loading tests of two large diameter - long drilled shafts (diameter=2.0m, length=75m) which were embedded into weathered rocks through thick soft marine clays and sandy gravels. Prior to the real dynamic loading test, the numerical simulation for the test procedure was performed to check the structural stability of the main pile body using equivalent static elastic analysis and the application of the hammer system using WEAP (Wave Equation Analysis of Pile Driving). Through these preliminary analyses the dynamic loading tests on large diameter - long drilled shafts have been successfully achieved.

  • PDF

Evaluation of Navigational Safety Using the Integrated Seakeeping Performance Index under Loading Conditions of a Ship (선박의 적화 상태별 종합내항성능지표에 의한 항해 안전성 평가)

  • 김순갑;김정만;공길영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.43-52
    • /
    • 1998
  • Generally, the navigational safety of a ship under various loading conditions is evaluated by a loading manual. However, the loading manual handles only statical factors such as weight and buoyancy of ship without including any wave conditions. Practically ship's safety is much concerned with the occurrences on the rough sea as propeller racing, rolling, deck wetness, vertical acceleration, lateral acceleration, slamming and so on. The purpose of this paper is to present a synthetic and practical evaluation method of navigational safety using the integrated seakeeping performance index(ISPI) under loading conditions of ship in seaways. The method is calculated by means of the ISPI by measuring only vertical acceleration. Judgement of dangerousness is carried out for four lading conditions : homogeneous full loaded, half loaded, heavy ballast loaded, and normal ballast loaded conditions. In developing the practical evaluation system of navigational safety, it is useful to solve the difficulties in measuring factors by sensors. And by applying the evaluation diagrames, navigators are able to avoid dangerousness by keeping away of the danger encountering angle of wave direction which the diagram shows.

  • PDF

Acid Fermentation Characteristic of Food Wastes According to the Organic Loading Rate (유기물부하에 따른 음식물찌꺼기의 산발효 특성)

  • Park, Jin-Sik;Ahn, Chul-Woo;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.975-982
    • /
    • 2006
  • This study has been conducted to optimum operating conditions for effective acid fermentation according to OLR(organic loading rate) in the mesophilic and thermophilic acid fermentation process. The results are summarized as follows. In order to obtain reasonable acid fermentation efficiency in performing acid fermentation of food wastes in thermophilic condition, organic loading rate was required below 20 gVS/L.d. As $SCOD_{Cr}/TKN,\;SCOD_{Cr}/T-P$ of thermophilic acid fermented food wastes In organic loading rate 20 gVS/L.d were 18.9, 73.4 respectively, it was possible to utilize as external carbon source for denitrification in sewage treatment plant after solid-liquid separation as well as co-digestion of fermented food wastes and sewage sludge.

A Heuristic for the Container Loading Problem (3차원 컨테이너 적재 문제를 위한 발견적 해법)

  • Jang, Chang-Sik;Kang, Maeng-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.156-165
    • /
    • 2005
  • A new heuristic algorithm for the heterogeneous single container loading problem is proposed in this paper, This algorithm fills empty spaces with the homogeneous load-blocks of identically oriented boxes and splits residual space into three sub spaces starting with an empty container. An initial loading pattern is built by applying this approach recursively until all boxes are exhausted or no empty spaces are left. In order to generate alternative loading patterns, the load-blocks of pattern determining spaces are replaced with the alternatives that were generated on determining the load-blocks. An improvement algorithm compares these alternatives with the initial pattern to find improved one. Numerical experiments with 715 test cases show the good performance of this new algorithm, above all for problems with strongly heterogeneous boxes.

Effects of damping on the parametric instability behaviour of plates under localized edge loading (compression or tension)

  • Deolasi, P.J.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.229-244
    • /
    • 1995
  • The parametric instability behaviour of a plate subjected to localized in-plane compressive or tensile periodic edge loading is studied, considering the effects of damping into the system. Different edge loading cases have been considered. Damping has been introduced in the form of proportional damping. Dynamic instability behaviour under compressive or tensile periodic edge loading shows that the instability regions are influenced by the load band width and its location on the edge. The effects of damping on the instability regions show that there is a critical value of dynamic load factor beyond which the plate becomes dynamically unstable. The critical dynamic load factor increases as damping increases. Damping generally reduces the widths of the instability regions.

Bone Cell Response to Neurotransmitters and Mechanical Loading (신경전달물질 및 물리적 자극에 대한 뼈 세포의 반응)

  • Kwag, J.H.;Kim, B.G.;Kim, K.H.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.89-93
    • /
    • 2009
  • Bone remodeling is a continuous process of skeletal renewal during which bone formation is tightly coupled to bone resorption. Mechanical loading is an important regulator of bone formation and resorption. In recent studies, neurotransmitters such as vasoactive intestinal peptide (VIP) were found to be present inside bone tissue and have been suggested to potentially regulate bone remodeling. In this study, our objective was to use a pre-established in vitro oscillatory fluid flow-induced shear stress mechanical loading system to quantify the effect of VIP on bone resorptive activity and investigate its combined effect with mechanical loading. VIP decreased osteoclastogenesis significantly decreased RANKL/OPG mRNA ration by approximately 90%. Combined VIP and mechanical loading further decreased RANKL/OPG ratio to approximately 95%. These results suggest that VIP present in bone tissue may synergistically act with mechanical loading to regulate bone remodeling via suppression of bone resorptive activities.

Topological Structural Optimization under Multiple-Loading Conditions (Multiple-loading condition을 고려한 구조체의 위상학적 최적화)

  • 박재형;홍순조;이리형
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.179-186
    • /
    • 1996
  • A simple nonlinear programming(NLP) formulation for the optimal topology problem of structures is developed and examined. The NLP formulation is general, and can handle arbitrary objective functions and arbitrary stress, displacement constraints under multiple loading conditions. The formulation is based on simultaneous analysis and design approach to avoid stiffness matrix singularity resulting from zero sizing variables. By embedding the equilibrium equations as equality constraints in the nonlinear programming problem, we avoid constructing and factoring a system stiffness matrix, and hence avoid its singularity. The examples demonstrate that the formulation is effective for finding an optimal solution, and shown to be robust under a variety of constraints.

  • PDF

In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment (생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성)

  • Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.

Development of Statistical Truck Load Model for Highway Bridge using BWIM System (BWIM 시스템을 이용한 고속도로 교량 차량하중 모형 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Bae, Doo-Byong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.143-153
    • /
    • 2006
  • In design of bridges, estimation of actions and loadings is very important for the safety and maintenance of bridges. In general, effect of traffic loading on the bridge can be modeled as live load (including impact load) and fatigue load. For estimation of traffic loading, it is important to get reliable and comprehensive truck statistical data such as the traffic and weight information. To get statistical data, Bridge Weigh-In-Motion (BWIM), which measures the truck weights without stopping the traffic, is need to be developed. In this study, BWIM system with various functions is developed first. Then this system is used to get comprehensive truck data. Traffic loadings including fatigue and live loading are formulated from the truck data acquired from the bridges. Objectives of this study are to develop the BWIM system, to apply the system in test bridge in Highway, and to formulate the live and fatigue loading for bridge design.