• Title/Summary/Keyword: Loading Simulation

Search Result 1,152, Processing Time 0.027 seconds

A Study on Fluctuating Pressure Load on High Speed Train Passing through Tunnels

  • Seo Sung-Il;Park Choon-Soo;Min Oak-Key
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.482-493
    • /
    • 2006
  • The carbody structure of a high speed train passing through a tunnel is subjected to pressure fluctuation. Fatigue strength of the carbody structure against the fluctuating pressure loading should be proved in the design stage for safety. In this study, to get the useful information on the pressure fluctuation in the tunnel, measurement has been conducted during test running of KHST on the high speed line for two years. The measured results were analyzed and arranged to be used for carbody design. A prediction method for the magnitude and frequency of pressure change was proposed and the propagating characteristics of pressure wave was investigated. By statistical analysis for the measured results, a pressure loading spectrum for the high speed train was given. The proposed method can also be used to estimate the pressure loading spectrum for new high speed line at design stage combined with the results of train performance simulation.

Conjunctive Use of SWAT and WASP Models for the Water Quality Prediction in a Rural Watershed (농촌유역 하천의 수질예측을 위한 SWAT모형과 WASP모형의 연계운영)

  • 권명준;권순국;홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • Predictions of stream water quality require both estimation of pollutant loading from different sources and simulation of water quality processes in the stream. Nonpoint source pollution models are often employed for estimating pollutant loading in rural watersheds. In this study, a conjunctive application of SWAT model and WASP model was made and evaluated for its applicability based on the simulation results. Runoff and nutrient loading obtained from the SWAT model were used for generating input data for WASP model. The results showed that the simulated runoff was in good agreement with the observed data and indicated reasonable applicability. Loading for the water quality parameters predicted by WASP model also showed a reasonable agreement with the observed data. It is expected that stream water quality could be predicted by the coupled application of the two models, SWAT and WASP, in rural watersheds.

Occupant Safety Analysis for Wheelchair Bus Development (휠체어 탑승 버스의 승객안전도 분석)

  • Kim, Kyungjin;Shin, Jaeho;Yong, Boojoong;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.

A Study on the Design of the Warper Beam Considering Friction (마찰을 고려한 경편기용 정경빔의 설계에 관한 연구)

  • 임문혁;김영규;신현명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.140-148
    • /
    • 2003
  • An analysis fur the warping process has been performed to design the warper beam. Nonlinear material response is included in the physical model of polyester yarn. Large deformation finite element simulation considering contact and frictional analysis are used to obtain the pressure on the barrel of the warper beam. Loading condition on the flange is assumed by using the pressure on the barrel, winding number of yarn, Poisson's ratio of fiber, and fiber volume fraction. By using the above loading conditions NASTRAN finite element simulation is performed to calculate stress distribution and deformation of the warper beam. By comparing the deformed shape of the flange with experimental result, loading condition on the flange has been obtained. The obtained loading conditions on the barrel and flange can be utilized to design the warper beam.

RRP Loading Patterns and Standard Dimensions for Block Pattern in Membership Wholesale Clubs (Membership Wholesale Club에서의 RRP 적재패턴 및 블록패턴 표준규격에 관한 연구)

  • Jung, Sung-Tae;Han, Kyu-Chul
    • Journal of Distribution Science
    • /
    • v.13 no.7
    • /
    • pp.41-51
    • /
    • 2015
  • Purpose - This study analyzes loading efficiency by loading pattern for package standardization and reduction of logistics costs, along with the creation of revenue for the revenue review panel (RRP) of Membership Wholesale Clubs (MWC). The study aims to identify standard dimensions that can help improve the compatibility of the pallets related to display patterns preferred by the MWC and thereby explore ways to enhance logistics efficiency between manufacturers and retailers through standardization. Research design, data, and methodology - The study investigates and analyzes the current status based on actual case examples, i.e., manufacturer A and Korea's MWC (A company, B company, and C company), and thus devises improvement measures. To achieve this, the case of manufacturer A delivering to MWC was examined, and the actual pallet display patterns for each MWC were investigated by visiting each distribution site. In this study, TOPS (Total Optimization Packaging Software, USA) was used as the tool for pallet loading efficiency simulations the maximum allowable dimension was set to 0.0mm to prevent the pallet from falling outside the parameters, and the loading efficiency was analyzed with the pallet area. In other words, the study focused on dimensions (length x width x height) according to the research purpose and thereby deduced results. Results - The analysis of pallet loading patterns showed that the most preferred loading patterns for loading efficiency according to product specification, such as pinwheel, brick, and block patterns, were used in the case of the general distribution products, but the products were configured with block patterns in most cases when delivered to MWCs. The loading efficiency by loading pattern was analyzed with respect to 104 nationally listed standard dimensions. Meanwhile, No.51 (330 × 220mm) of KS T 1002 (1,100 × 1,100mm) was found to be the dimension that could bring about an improved loading efficiency, over 90.0% simultaneously in both the T-11 and T-12 pallet systems in a loading pattern configuration with the block pattern only, and the loading efficiency simulation results also confirmed this as the standard dimension that can be commonly applied to both the T-11 pallet (90.0%) and the T-12 pallet (90.7%) systems. Conclusions - The loading efficiency simulation results by loading pattern were analyzed: For the T-11 pallet system, 17 standard dimension sizes displayed the loading efficiency of 90.0% or more as block patterns, and the loading capacity was an average of 99.0%. For the T-12 pallet system, 35 standard dimension sizes displayed the loading efficiency of more than 90% as block patterns (the average loading efficiency of 98.6%). Accordingly, this study proposes that the standard dimensions of 17 sizes with the average loading efficiency of 99.0% should be applied in the use of the T-11 pallet system, and those of 35 sizes with the average loading efficiency of 98.6% should be reviewed and applied in the use of the T-12 pallet system.

3D numerical simulation of group-pile foundation subjected to horizontal cyclic loading (3차원 수치해석을 이용한 군말뚝기초의 반복수평하중재하실험에 대한 연구)

  • Jin, Youngji-Ji;Kim, Jin-Man;Choi, Bong-Hyuck;Lee, Dea-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.515-518
    • /
    • 2010
  • Horizontal forces may form a major part of the loading system for structures supported on pile groups. It is known that during a strong earthquake, the dynamic behavior of a group-pile foundation is related not only to the inertial force coming from the superstructures but also to the deformation of the surrounding ground. Therefore, it is necessary to understand the behaviors of the group-pile foundations and superstructures during major earthquakes. In this paper, numerical simulation of real-scale group-pile foundation subjected to horizontal cyclic loading is conducted by using a program named as DBLEAVES. In the analysis, nonlinear behaviors of ground and piles are described by cyclic mobility model and axial force dependent model (AFD model). The purpose of this paper is to prove availability of the analysis method by comparing numerical results and test results.

  • PDF

Auto Qualification Test Guide of Control Loading System for Flight Simulation Training Device (모의비행훈련장치용 조종반력시스템의 자동-QTG 구현)

  • Chun-Han Hong;Won-Seok Shin;Sang-Jin Jung;Byeong Soo Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • Flight simulators are crucial devices for aircraft piloting training and simulation, requiring regular inspections to maintain performance and operational quality. This study explores the development of an automated inspection system for flight simulators to automate quality inspections of control loading systems (CLS). While quality inspection of the control loading system (CLS) is essential for flight simulators, manual inspections are common practice. To address this, we developed an Auto Qualification Test Guide (Auto QTG) using artificial control logic and sensor data and applied it to the militarily simulator. Experimental results demonstrate that Auto QTG successfully automates quality inspections of CLS, enhancing accuracy and efficiency. This automated inspection system is expected to contribute to improving the operation and maintenance of flight simulators.

Stability Evaluation of Bump Crossing and Loading of Proto-type Mini-Forwarder by Computer Simulation (컴퓨터 시뮬레이션을 이용한 소형 임내차 시작기의 장애물 통과 및 적재 안정성 평가)

  • Park H. K.;Kim K. U.;Shim S. B.;Kim J. W.;Park M. S.;Song T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.366-372
    • /
    • 2005
  • The objective of this study was to evaluate the bump crossing and loading stability of a proto-type mini-forwarder under development. The evaluation was performed by computer simulation using a multi-body dynamic analysis program, Recur- Dyn 5.21. The proto-type was modeled and its properties such as mass, mass center, and mass moment of inertia were determined using 3D CAD modeler, Solid Edge 8.0. The $\%$ errors of masses, mass center, mass moment of inertia, and vertical motion of the model were within less than $10\%$ and the model's behavior agreed relatively well with those of the proto-type when traversing over a rectangular bump. Using the validated model, bump crossing of the proto-type was simulated and the loading limit was determined. It was found that effects of the shapes of bump on the bump crossing performance was insignificant within the practical heights of bumps. Stability of bump crossing increased with loading. However, loading of longer logs than 2.7 m made the crossing unstable because the ends of logs contacted ground when traversing over the bump. The maximum loading capacity of the proto-type was estimated to be 7.8 kN of 2.7 m long logs.

Study on the Effect of Product Line Pricing on Loading Efficiency and Logistics Cost (상품라인별 가격결정이 적재효율 및 물류비에 미치는 영향에 관한 연구)

  • Jung, Sung-Tae;Yoon, Nam-Soo;Han, Kyu-Chul
    • Journal of Distribution Science
    • /
    • v.12 no.8
    • /
    • pp.55-69
    • /
    • 2014
  • Purpose - Despite the importance of price, many companies do not implement pricing policies smoothly, because typical price management strategies insufficiently consider logistics efficiency and an increase in logistics costs due to logistics waste. This study attempts to examine the effect of product line pricing, which corresponds to product mix pricing, on logistics efficiency in the case of manufacturer A, and analyzes how logistics performance changes in response to these variables. Research design, data, and methodology - This study, based on the case of manufacturer A, involved research through understanding the current status, analyses, and then proposing improvement measures. Among all the products of manufacturer A, product group B was selected as the research object, and its distribution channel and line pricing were examined. As a result of simulation, for products with low loading efficiency, improvement measures such as changing the number of bags in the box were suggested, and a quantitative analysis was conducted on how these measures influence logistics costs. The TOPS program was used for the Pallet loading efficiency simulation tool in this study. To prevent products from protruding out of the pallet, the maximum measurement was set as 0.0mm, and loading efficiency was based on the pallet area, and not volume. In other words, its size (length x width) was focused upon, following the purpose of this study and, then, the results were obtained. Results - As a result of the loading efficiency simulation, when the number of bags in the box was changed for 36 products with low average loading efficiency of 73.7%, as shown in

    , loading efficiency improved to 89.9%. Further, from calculating logistics cost based on the cost calculation standard of manufacturer A, the amount of annual logistics cost reduction amounted to 101,458,084 KRW. Given that the sum of the logistics cost of the product group B of manufacturing enterprises A is 400,340,850 KRW, it can be reduced by 25%, to 298,882,766 KRW. Although many methods improve loading efficiency, this study proved that logistics cost could be reduced by changing the number of bags within boxes. If this measure is applied to other items, visible logistics cost reduction effects will be realized through improvements in loading efficiency. Conclusions - Future pricing policies should consider their correlation with quality, loading efficiency, product specifications, and logistics standardization to prevent logistics waste, enabling management to improve earnings for companies. Thus, when companies decide pricing policies for new products, the aspects of merchandising and marketing should take priority; however, the aspect of logistics also needs to be considered as significant. Measures revealed by the study results are not only the responsibilities of manufacturing enterprises. Pricing policy agreements between manufacturing enterprises and distribution companies, and logistics factors related to price determination should be considered; further, governments should also support them for their collaborations. This will enable consumers to purchase quality products with low prices.

  • FATIGUE TEST TO THE BLADES AXLE OF ROTARY TILLER

    • Mao, Hanping;Chen, Cuiying
      • Proceedings of the Korean Society for Agricultural Machinery Conference
      • /
      • 1993.10a
      • /
      • pp.291-296
      • /
      • 1993
    • Taking a bledes axle of rotary tiller as a example, this paper discusses influences of four loading essential factors, which are strengthened amplitude, cycle times, loading sequence and loading frequency. in fatigue life. Determination principles of above four factors and monitoring methods of fatigue damage by local strain are dealt with. The actual field testing check of farm machinery is rapidly simulated by laboratory program fatigue test can shorten the period of development and improvement of a product. In the time of in-door simulation test, damage monitoring and four loading essential factors, which are strengthened amplitude , cycle times, loading sequence and loading frequency, have to be dealt with . If these problems are solved successfully, it is possible to accelerated test speed, reduce costs and manhours, and raise accuracy of test result. However strengthening method, loading pattern and influence of loading frequency on test result have not so far been discu sed systematically, damage monitoring is even more a difficult problem. Authors have studied above problems with the object of blades axle of rotary tiller.

    • PDF

    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.