• Title/Summary/Keyword: Loading Modes

Search Result 473, Processing Time 0.019 seconds

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber (동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.

Physical Properties and Detachment Characteristics of Persimmon Fruit (감 과실(果實)의 물리성(物理性)및 이탈특성(離脫特性))

  • Kim, Tae Han
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.62-69
    • /
    • 1985
  • In order to develop the mechanical fruit harvest system the detachment force, type and torque investigated and analyse as several loading modes were applied on the fruit-stem of the persimmon fruit. A proving ring with strain gauges was used for the experiment. The following conclusions were drawn from the results : The mode of withdrawl of the stem from the calyx appeared highly as the persimmon fruit matured. The mode of failure at the junction of the stem and calyx which was desirable mode for mechanical fruit harvest increased as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. However the mode of failure of the fruiting branch decreased for the same degree of angle pull as above. The range of detachment force of the persimmon fruit was from 13 to 5 kg. The detachment force decreased from 47 to 8 % as the fruit matured. Also, the force decreased from 31 to 24 % for the same maturity levels as the angular displacement of the fruit with respect to the stem axis increased from zero to ninety degrees. The range of detachment force to weight ratio(F/W) of the fruit was from 130 to 54 approximately. The detachment force to weight ratio (F/W) decreased from 36 to 8 % as the fruit matured. Also, the ratio (F/W) decreased from 49 to 33 % for the same maturity levels as the same degree of angle pull as above. In order to remove fruit from tree the desirable force applied to the stem is approximately from 1,280 to 530 kg. Also, the desirable torque to remove the fruits was approximately from 1.1 to $0.5kg{\cdot}cm$.

  • PDF