• Title/Summary/Keyword: Loading Modes

Search Result 480, Processing Time 0.028 seconds

Slaughterhouse wastewater treatment in a bamboo ring anaerobic fixed-bed reactor

  • Tritt, Wolfgang P.;Kang, Ho
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.70-75
    • /
    • 2018
  • A pilot scale anaerobic fixed-bed with a reactor volume of $2.8m^3$ was built to treat slaughterhouse wastewater. Bamboo rings were chosen as support media mainly because of their cheaper price in underdeveloped countries. Even with their lower porosity and specific surface, the reactor performance showed a maximum 95% COD removal efficiency at an organic loading rate (OLR) of $1kg\;COD/m^3-d$ with its corresponding hydraulic retention time (HRT) of 7.5 d. At a higher OLR of $4.0kg\;COD/m^3-d$, the COD removal efficiency of 75% was achieved with an HRT of 2 d. No big difference in COD removal efficiencies was found between the reactors operated in both upflow and downflow modes. Their operational behavior and effluent characteristics were similar. The effluent COD/TKN ratio of 6.67 at an OLR of $4.0kg\;COD/m^3-d$ was only marginal acceptable range for a subsequent biological denitrification process. Otherwise carbon supplementation is required at a lower OLR.

The Effect of The Flexural Strength Ratio on Beam-Column Joint with High and Low Strength Concrete (고강도와 보통 강도 콘크리트를 사용한 보-기둥 접합부의 휨강성화에 따른 이력거동)

  • Shin, S.W.;An, J.M.;Moon, J.I.;Kim, D.K.;Lee, K.S.;Park, H.M.;Lee, S.H.;Oh, J.G.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.185-190
    • /
    • 1992
  • ACI318-89 Recommended that when the specified compressive strength of concrete in a column is greater than1.4 times that specified for a floor system, top surface of the column concrete shall extend 2ft(600mm)into the slab from the face of column to avoid unexpected brittle failure. The major variables are extension distance, flexural strength ratio(Mr), and shear reinforcement ratio(Vs). Test results are as follows ; (1) The failure modes of specimens under cyclic loading were concentrated at critical region from beam-column joint face. (2) Ductility index($\mu$f) were increased with increasing of shear confinement ratio and flexural strength ratio. (3)The specimens with 2ft extension distance showed more ductility than the specimens with 1ft extension distance.

  • PDF

Behavior of Composite RCS Beam-Column Joint Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 기둥과 철골보 합성구조의 접합부 성능에 관한 연구)

  • Cho, Pil-Kyu;Kim, Sang-Jun;Her, Jun;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.577-581
    • /
    • 1998
  • Recent trends in the construction of building frame feature the increase use of composite steel concrete members functioning together in what terms of mixed structural systems. One of such systems, RCS(reinforced concrete column and steel beam) system, is known to make use of type of member in the most efficient manner to maximize the structural and economic benifits. Based on the results, joint behavior and design were described in terms of two primary modes of failure ; joint panel shear and vertical bearing. In test specimen, joint deformation is observed at internal region greater than at external region.

  • PDF

Flexural Rehabilitation Effect of Pre-loaded RC Beams Strengthened by Steel Plate (재하상태에 따른 강판보강공법의 휨 보강효과)

  • 한복규;홍건호;신영수;조하나
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.701-704
    • /
    • 1999
  • The purpose of this study was to investigate the effectiveness of the flexural rehabilitation of the pre-loaded reinforced concrete beams strengthened by the steel plate. Main test parameters were the existence and the magnitude of the pre-loading at the flexural of rehabilitation and the tensile reinforcement ratio of the specimens. Seven beam specimens were tested to investigate the effectiveness of the rehabilitation method. Test results showed that the ultimate load capacities of the pre-loaded specimens were higher than not-pre-loaded specimens at the rehabilitation. The cause of the pharameter was analyzed if is suggested that the bond failure between the concrete and the strengthening steel plate occured prior to the yielding of the tension reinforcement. The member flexural stiffnesses, were similar regardless of the load conditions at retrofit and failure modes showed brittle aspect caused by rip-off failure.

  • PDF

Strength Estimation of Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Effects of intermittent effluent recycling on the performance of UASB process (간헐적인 유출수 반송이 UASB 반응조 운전효율에 미치는 영향)

  • 이헌모;양병수
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.317-324
    • /
    • 1993
  • Effluent recycling effect on UASB reactor performances is known as an important operational factor. In the present study, the possibility of intermittent recycle in UASB process for saving the power consumption was examined at different organic loading and various operational modes in recycle time period. The organic removal efficiencies of the reactors operated with the intermittent effluent recycle were considerably higher compared to those without the effluent recycle. In the intermittent recycle mode, the organic removal efficiencies slightly decreased as the non-recycle time period in the operational mode increased. Proper ratio of recycle and non-recycle time period in the mode seemed to be required to prevent the produced biogas from accumulation in the sludge bed, which caused dead zone in the reactor and sludge loss when the gas was escaped from the bed at the certain pressure.

  • PDF

Prediction of the Radiated Emission(RE)s due to the PCB Power-Bus' Resonance Modes and Mitigation of the RE Levels

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • PCB Power-Bus (comprising power/ground planes) impedance and fields are evaluated by an efficient series expansion method that is suggested in this paper. It is used to investigate the structure's radiated emission(RE) levels and find acceptable ways of loading the power/ground planes such as decoupling capcitor(DeCap)s, balanced feeding and slits, in order to reduce the interferences. Also, the calculations and measurements of a proposed geometry are verified by vector fitting as a analysis model to check the behavior of the slit.

Updating of Finite Element Models Including Damping (감쇠를 포함한 유한요소모형의 개선)

  • Park, O-Cheol;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.708-713
    • /
    • 2007
  • Finite element model updating has been performed using an optimization technique in the paper. The objective function consists of natural frequencies, modal assurance criterion values, and bandwidths of modes, which are obtained from finite element analysis and experiment. Young's modulus and damping coefficient of the material are selected as design variables whose values are modified to make the objective function as small as possible. To consider the loading effect of an accelerometer, its mass and moment of inertia are added to design variables. This model updating method has been applied to a cantilever beam, and experimental data are measured by modal test.

  • PDF

A Study on Spring Back in Sheet Forming of Amorphous Alloys (아몰퍼스 판재 성형의 스프링 백에 관한 연구)

  • Yoon S.H.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF

Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode (축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스)

  • Park, Chan-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.