• Title/Summary/Keyword: Loading Identification

Search Result 152, Processing Time 0.02 seconds

Structural monitoring of a wind turbine steel tower - Part I: system description and calibration

  • Rebelo, C.;Veljkovic, M.;da Silva, L. Simoes;Simoes, R.;Henriques, J.
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.285-299
    • /
    • 2012
  • This paper describes the development and calibration of a structural monitoring system installed in a 80 meters high steel wind tower supporting a 2.1 MW turbine Wind Class III IEC2a erected in the central part of Portugal. The several signals are measured at four different levels and include accelerations, strains on the tower wall and inside the connection bolts, inclinations and temperature. In order to correlate measurements with the wind velocity and direction and with the turbine operational parameters the corresponding signals are obtained directly from the turbine own monitoring system and are incorporated in the developed system. Results from the system calibration, the structural identification and the initial period of data acquisition are presented in this paper.

Automatically Bending Process control for Shaft Straightening Machine (축교정기를 위한 자동굽힘공정제어기 설계)

  • 김승철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.54-59
    • /
    • 1998
  • In order to minimize straightness error of deflected shafts, a automatically bending process control system is designed, fabricated, and studied. The multi-step straightening process and the three-point bending process are developed for the geometric adaptive straightness control. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and studied for the three-point bending processes. Selection of a loading point supporting condition are derved form fuzzy inference and fuzzy self-learning method in the multi-step straighternign process. Automatic straightening machine is fabricated by using the develped ideas. Validity of the proposed system si verified through experiments.

  • PDF

RAN-aCGH: R GUI Tools for Analysis and Visualization of an Array-CGH Experiment

  • Kim, Sang-Cheol;Kim, Byung-Soo
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.137-139
    • /
    • 2007
  • RAN-aCGH is an R GUI tool for the analysis and visualization of array comparative genomic hybridization (array-CGH) experiments. The tool consists of data-loading, preprocessing for missing data, several methods for statistical identification of DNA copy number aberration, and visualization of the copy number change. RAN-aCGH requires a single input format, provides various visualizations, and allows the addition of a new statistical method, all in a user-friendly graphic user interface (GUI).

Overall damage identification of flag-shaped hysteresis systems under seismic excitation

  • Zhou, Cong;Chase, J. Geoffrey;Rodgers, Geoffrey W.;Xu, Chao;Tomlinson, Hamish
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.163-181
    • /
    • 2015
  • This research investigates the structural health monitoring of nonlinear structures after a major seismic event. It considers the identification of flag-shaped or pinched hysteresis behavior in response to structures as a more general case of a normal hysteresis curve without pinching. The method is based on the overall least squares methods and the log likelihood ratio test. In particular, the structural response is divided into different loading and unloading sub-half cycles. The overall least squares analysis is first implemented to obtain the minimum residual mean square estimates of structural parameters for each sub-half cycle with the number of segments assumed. The log likelihood ratio test is used to assess the likelihood of these nonlinear segments being true representations in the presence of noise and model error. The resulting regression coefficients for identified segmented regression models are finally used to obtain stiffness, yielding deformation and energy dissipation parameters. The performance of the method is illustrated using a single degree of freedom system and a suite of 20 earthquake records. RMS noise of 5%, 10%, 15% and 20% is added to the response data to assess the robustness of the identification routine. The proposed method is computationally efficient and accurate in identifying the damage parameters within 10% average of the known values even with 20% added noise. The method requires no user input and could thus be automated and performed in real-time for each sub-half cycle, with results available effectively immediately after an event as well as during an event, if required.

Development of the Embedded System-based Real-time Internal Status Identification System for Overhead Bin (임베디드 시스템 기반 오버헤드 빈 내부 상황 실시간 식별 시스템 개발)

  • Jaeeun Kim;Hyejung Lim;Sungwook Cho
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.111-119
    • /
    • 2023
  • Internal storage state, weight data, and weight-centered calculation values for overhead bin can all be seen in this paper's real-time internal status identification system. The suggested system offers such valuable data via a range of sensors, including load cells and switch arrays. The proposed system could locate internal free space, locate the center of gravity, and give real-time visual information. It was developed utilizing an embedded system and the C programming language. These features led to the creation of smart overhead bins and real-time cargo loading monitoring technologies, both of which could one day aid in the creation of a cargo loading automation system.

A two-stage Kalman filter for the identification of structural parameters with unknown loads

  • He, Jia;Zhang, Xiaoxiong;Feng, Zhouquan;Chen, Zhengqing;Cao, Zhang
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.693-701
    • /
    • 2020
  • The conventional Kalman Filter (KF) provides a promising way for structural state estimation. However, the physical parameters of structural systems or models should be available for the estimation. Moreover, it is not applicable when the loadings applied to the structures are unknown. To circumvent the aforementioned limitations, a two-stage KF with unknown input approach is proposed for the simultaneous identification of structural parameters and unknown loadings. In stage 1, a modified observation equation is employed. The structural state vector is estimated by KF on the basis of structural parameters identified at the previous time-step. Then, the unknown input is identified by Least Squares Estimation (LSE). In stage 2, based on the concept of sensitivity matrix, the structural parameters are updated at the current time-step by using the estimated structural states obtained from stage 1. The effectiveness of the proposed approach is numerically validated via a five-story shearing model under random and earthquake excitations. Shaking table tests on a five-story structure are also employed to demonstrate the performance of the proposed approach. It is demonstrated from numerical and experimental results that the proposed approach can be used for the identification of parameters of structure and the external force applied to it with acceptable accuracy.

Lifetime Prediction of Geogrids for Reinforcement of Embankments and Slopes through Time-Temperature Superposition

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.147-154
    • /
    • 2005
  • The creep resistance of geogrids is one of the most significant long-term safety characteristics used as the reinforcement in slopes and embankments. The failure of geogrids is defined as creep strain greater than 10%. In this study, the accelerated creep tests were applied to polyester geogrids at various loading levels of 30, 50% of the yield strengths and temperatures using newly designed test equipment. Also, the new test equipment permitted the creep testing at or above glass transition temperature($T_g$) of 75, 80, $85^{\circ}C$. The time-dependent creep behaviors were observed at various temperatures and loading levels. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. The shifting factors(AFs) were obtained using WLF equation. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results confirmed that the failure distribution of geogrids followed Weibull distribution with increasing failure rate and the lifetimes of geogrids were close to 100 years which was required service life in the field with 1.75 of reduction factor of safety. Using the newly designed equipment, the creep test of geogrids was found to be highly accelerated. Furthermore, the time-temperature superposition with the newly designed test equipment was shown to be effective in predicting the lifetimes of geogrids with shorter test times and can be applied to the other geosynthetics.

OMA testing by SLDV for FEM Updating

  • Milla, Brian-Mac;Mehdi Batel;Eddy Dascott;Ben Verbeeck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.840-840
    • /
    • 2003
  • Operational Modal Analysis (OMA) is a technique for identification of modal parameters by measurement of only the system's response. On many lightweight structures, such as load-speaker cones and disk drive read/write heads, is impossible or impractical to measure the input forces. Another characteristic of lightweight structure is their sensitivity to mass loading from sensors. The Scanning Laser Doppler Vibrometry(SLDV) allows response measurements to be taken without mass loading. One disadvantage of OMA testing compared to tradition input output modal testing is the OMA mode shapes are un-scaled. This means that the mode shape obtained from an OMA test can not used for analytical structural modification studies. However, the un-scaled mode shapes from an OMA test can be used to update a Finite Element Model (FEM). The updated FEM can then be used to analytically predict the effect of structural modifications. This paper will present the results of an OMA test performed on a simple plate and motor in operating conditions. The un-scaled mode shapes from this test will be used to update a FEM model of the system. The updated FEM model will be then be used to predict the effect of attaching a mass to the plate. The shapes predicted by the FEM for the modified system will be compared to a second OMA test on the modified system

  • PDF

A Study on the Fracture Behavior of Laminated Carbon/Epoxy Composite by Acoustic Emission (음향방출법을 이용한 적층복합재료의 파괴거동 연구)

  • Oh, Jin-Soo;Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.326-333
    • /
    • 2010
  • In this study, DAQ and TRA modules were applied to the CFRP single specimen testing method using AE. A method for crack identification in CFRP specimens based on k-mean clustering and wavelet transform analysis are presented. Mode I on DCB under vertical loading and mode II on 3-points ENF testing under share loading have been carried out, thereafter k-mean method for clustering AE data and wavelet transition method per amplitude have been applied to investigate characteristics of interfacial fracture in CFRP composite. It was found that the fracture mechanism of Carbon/Epoxy Composite to estimate of different type of fractures such as matrix(epoxy resin) cracking, delamination and fiber breakage same as AE amplitude distribution using a AE frequency analysis. In conclusion, the presented results provide a foundation for using wavelet analysis as efficient crack detection tool. The advantage of using wavelet analysis is that local features in a displacement response signal can be identified with a desired resolution, provided that the response signal to be analyzed picks up the perturbations caused by the presence of the crack.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.