• 제목/요약/키워드: Loading History

검색결과 343건 처리시간 0.027초

사전압밀된 포화점토의 응력이력과 2차압밀에 관한 연구 (A Study on the Stress History and Secondary Compression of Saturated Clays Subjected to Precompression)

  • 김형주
    • 한국지반공학회지:지반
    • /
    • 제10권4호
    • /
    • pp.167-180
    • /
    • 1994
  • 사전압밀된 포화점토의 응력이력이 2차압밀특성에 미치는 영향 및 Bjerrum모델이 과압밀점토의 2차압밀침하추정에 적용가능한지를 실험적으로 파악하기 위하여 재성형점토를 이용하여 재하-제하 및 재하-제하-재재하 응력이력의 조건에서 일련의 장기압밀시험을 실시하였다. 실험결과에 의하면 과압밀점토의 2차압밀침하는 전반부에서 응력이력의 영향을 받고 전반부의 2차압밀계수 Cn은 OCR(선행 압밀하중 Pcy재재하하중 Pr), 최대 OCR(선행압밀하중 Pcy제 하시의 하중 Pu)과,제하시간에 의존하며 과압밀비 증가에 따라 감소한다. 또한 2차압밀후반부 의 2차압밀계수 C.2는 OCR의 영향을 받으며 과압밀비 증가에 따라 감소한다. 최종적으로 실험 결과와 Bjerrum모델을 비교분석한 결과 임의 응력이력범위를 벗어나면 과압밀점토에서 Bjerrum모델의 적용은 가능하다.

  • PDF

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

낙동강 모래의 반복응력이력에 의한 거동 (Behaviour of Nak-dong River Sand on Cyclic Stress History)

  • 김영수;박명렬;김병탁;이상복
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.295-302
    • /
    • 2000
  • Earthquakes not only produce additional load on the structures and underlying soil, but also change the strength characteristics of the soil. Therefore, in order to analyze soil structures for stability, the behaviour after earthquake must be considered. In this paper, a series of cyclic triaxial tests and monotonic triaxial tests were carried out to investigate the undrained shear strength and liquefaction strength characteristics of Nak-Dong River sand soils which were subjected to cyclic loading. The sample was consolidated in the first stage and then subjected to stress controlled cyclic loading with 0.1Hz. After the cyclic loading, the cyclic-induced excess pore water pressure was dissipated by opening the drainage valve and the sample was reconsolidated to the initial effective mean principal stress(p/sub c/'). After reconsolidation, the monotonic loading or cyclic loading were applied to the specimen. In the results, the undrained shear strength and liquefaction strength characteristics depended on the pore pressure ratio(Ur=U/p/sub c/'). The volume change following reconsolidation can be a function of cyclic-induced excess pore water pressure and the maximum double amplitude of axial strain.

  • PDF

동적하중하에서의 용접이음부의 강도적특성에 대한 온도상승을 고려한 열탄소성 해석 (Thermal Elastic-Plastic Analysis of Strength Considering Temperature Rise due to Plastic Deformation by Dynamic Leading in Welded Joint)

  • 안규백;망월정인;대전흉;방한서;농전정남
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.68-77
    • /
    • 2003
  • It is important to understand the characteristics of material strength and fracture under the dynamic loading like as earthquakes to assure the integrity of welded structures. The characteristics of dynamic strength and fracture in structural steels and their welded joints should be evaluated based on the effects of the strain rate and the service temperature. It is difficult to predict or measure temperature rise history with the corresponding stress-strain behavior. In particular, material behaviors beyond the uniform elongation can not be precisely evaluated, though the behavior at large strain region after the maximum loading point is much important for the evaluation of fracture. In this paper, the coupling phenomena of temperature and stress-strain fields under the dynamic loading was simulated by using the finite element method. The modified rate-temperature parameter was defined by accounting for the effect of temperature rise under the dynamic deformation, and it was applied to the fully-coupled analysis between heat conduction and thermal elastic-plastic behavior. Temperature rise and stress-strain behavior including complicated phenomena were studies after the maximum loading point in structural steels and their undermatched joints and compared with the measured values.

비행하중에서 피로균열진전에 미치는 미소하중의 영향 (The Effect of Low-amplitude Cycles in Flight-simulation Loading)

  • 심동석;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

Performance analysis tool for reinforced concrete members

  • Esmaeily, Asad;Peterman, Robert J.
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.331-346
    • /
    • 2007
  • A computer program was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load. This performance is significantly affected by the loading history. Different monotonic material models as well as hysteresis rules for confined and unconfined concrete and steel, some developed and calibrated against test results on material samples, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis. One of the assumptions on curvature distribution along the member was based on a method developed to address the variation of the plastic hinge length as a result of loading pattern. Functionality of the program was verified by reproduction of analytical results obtained by others for several cases, and accuracy of the analytical process and the implemented models were evaluated against the experimental results from large-scale reinforced concrete columns tested under the analyzed loading cases. While the program can be used to predict the response of a member under a certain loading pattern, it can also be used to examine various analytical models and methods or refine a custom material model against test data.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

정상 성인의 발목에 부가된 하중에 의한 보행 중 에너지 소모도 변화 (Change of energy consumption according to loading on the ankle of normal adults during gait)

  • 김봉옥;채수성;김용건;한동욱
    • The Journal of Korean Physical Therapy
    • /
    • 제11권2호
    • /
    • pp.43-50
    • /
    • 1999
  • The purpose of this study was to evaluate the change of the energy consumption when loading to leg of the 60persons who don't have past history of cardiopulmonary and neuromuscular disease, To evaluate the change or energy consumption, heart rate was measured in sitting position for 5minute, during walking for 3minute at for 4.8km on treadmill, and during resting state after walking with 1Kg loading to right ankle, and the other 1Kg loading was added to left ankle and then heart rates were measured in the The results were as follow; 1. PCI value without loading to Ankle were significantly increased compared to 1Kg, and 2Kg. (p<0.05) 2. Female Subjects showed mon increased PCI value in without leading and 2Kg loading compared to male subjects. ( p<0.05) 3. When 1Kg ana 2Ka loading to ankle significantly differences were showed between them. (p<0.05) 4. In the case of 1Kg and 2Kg loading, the difference among age groups was observed and the significant difference among PCI, PCI 1kg, PCI 2kg was showed in the only group that is less than 30 years old. 5. In every PCI condition the difference among height groups was observed and the significant difference among PCI conditions was showed in the only group that is less than 165cm. 6. The difference among weight groups in each PCI condition was not observed, but the significant differences among PCI conditions was showed in every group except the group that h from 60kg to 69kg. These results showed that energy consumption was increased according to loading on the ankle during Sate so weight of orthosis or prosthesis met be considered when choosing them and during gait training with these ones.

  • PDF

CCTV 영상과 딥러닝을 이용한 교량통행 차량하중 추정 (Estimation of Bridge Vehicle Loading using CCTV images and Deep Learning)

  • 배숙경;정우영;최수현;김병현;조수진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권3호
    • /
    • pp.10-18
    • /
    • 2024
  • 차량 하중은 교량의 열화를 일으키는 주된 원인 중 하나이다. 현재 WiM(Weigh-in-Motion)을 사용하여 통행 차량의 하중을 측정하고 있으나, WiM은 접촉식 센서로 설치 및 유지관리 비용이 큰 단점이 있다. 본 연구에서는 딥러닝과 CCTV 영상을 이용하여 비접촉식으로 교량 통행 차량 하중 이력을 추정하는 방법을 제안하였다. 제안된 방법은 물체 탐지 딥러닝 모델을 이용하여 통행 차종을 인식하고, 해당 차량의 하중을 국내 주요 차량 모델들의 공차중량에 근거하여 작성된 하중기반 7차종 분류표에 근거하여 추정한다. 물체 탐지 딥러닝 모델로는 Faster R-CNN 모델이 사용되었으며, Faster R-CNN 모델을 7차종 분류표에 따라 구축된 영상 학습데이터를 이용하여 학습시켰다. 학습된 딥러닝 모델의 성능은 교량 CCTV로 취득한 영상을 이용하여 검증하였다. 최종적으로 실제 교량 상부에 설치된 CCTV에서 취득한 영상을 이용하여 교량을 통행중인 차량 하중을 연속으로 추정함으로써 특정 시간동안 통행 차량의 하중 이력 그래프를 획득할 수 있음을 보였다.

Experimental study on ductile crack initiation in compact section steel columns

  • Luo, Xiaoqun;Ge, Hanbin;Ohashi, Masatoshi
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.383-396
    • /
    • 2012
  • In order to develop a verification method for extremely low cycle fatigue (ELCF) of steel structures, the initiation mechanism of ductile cracks is investigated in the present study, which is the first step of brittle fracture, occurred in steel bridge piers with thick-walled sections. For this purpose, a total of six steel columns with small width-thickness ratios were tested under cyclic loading. It is found that ductile cracks occurred at the column base in all the specimens regardless of cyclic loading histories subjected. Moreover, strain history near the crack initiation location is illustrated and an index of energy dissipation amount is proposed to evaluate deformation capacity of structures.