• Title/Summary/Keyword: Loading Distribution Method

Search Result 552, Processing Time 0.026 seconds

Optimization Method of Knapsack Problem Based on BPSO-SA in Logistics Distribution

  • Zhang, Yan;Wu, Tengyu;Ding, Xiaoyue
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.665-676
    • /
    • 2022
  • In modern logistics, the effective use of the vehicle volume and loading capacity will reduce the logistic cost. Many heuristic algorithms can solve this knapsack problem, but lots of these algorithms have a drawback, that is, they often fall into locally optimal solutions. A fusion optimization method based on simulated annealing algorithm (SA) and binary particle swarm optimization algorithm (BPSO) is proposed in the paper. We establish a logistics knapsack model of the fusion optimization algorithm. Then, a new model of express logistics simulation system is used for comparing three algorithms. The experiment verifies the effectiveness of the algorithm proposed in this paper. The experimental results show that the use of BPSO-SA algorithm can improve the utilization rate and the load rate of logistics distribution vehicles. So, the number of vehicles used for distribution and the average driving distance will be reduced. The purposes of the logistics knapsack problem optimization are achieved.

Simulation, analysis and optimal design of fuel tank of a locomotive

  • Yousefi, A. Karkhaneh;Nahvi, H.;Panahi, M. Shariat
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.151-161
    • /
    • 2014
  • In this paper, fuel tank of the locomotive ER 24 has been studied. Firstly the behavior of fuel and air during the braking time has been investigated by using a two-phase model. Then, the distribution of pressure on the surface of baffles caused by sloshing has been extracted. Also, the fuel tank has been modeled and analyzed using Finite Element Method (FEM) considering loading conditions suggested by the DIN EN 12663 standard and real boundary conditions. In each loading condition, high stressed areas have been identified. By comparing the distribution of pressure caused by sloshing phenomena and suggested loading conditions, optimization of the tank has been taken into consideration. Moreover, internal baffles have been investigated and by modifying their geometric properties, search of the design space has been done to reach the optimal tank. Then, in order to reduce the mass and manufacturing cost of the fuel tank, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Artificial Neural Networks (ANNs) have been employed. It is shown that compared to the primary design, the optimized fuel tank not only provides the safety conditions, but also reduces mass and manufacturing cost by %39 and %73, respectively.

Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement

  • Mohamed, Cherfi;Abderahmane, Sahli;Benbarek, Smail
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.37-43
    • /
    • 2018
  • In orthopedic surgery and in particular in total hip arthroplasty, the implant fixation is carried out using a surgical cement called polymethylmethacrylat (PMMA). This cement has to insure a good adhesion between implant and bone and a good load distribution to the bone. By its fragile nature, the cement can easily break when it is subjected to a high stress gradient by presenting a craze zone in the vicinity of inclusion. The focus of this study is to analyze the effect of inclusion in some zone of cement in which the loading condition can lead to the crack opening leading to their propagation and consequently the aseptic loosening of the THR. In this study, the fracture behavior of the bone cement including a strange body (bone remain) from which the onset of a crack is supposed. The effect of loading condition, the geometry, the presence of both crack and inclusion on the stress distribution and the fracture behavior of the cement. Results show that the highest stresses are located around the sharp tip of bony inclusion. Most critical cracks are located in the middle of the cement mantle when they are subjected to one leg standing state loading during walking.

보강(補强)된 원형(圓形)구멍을 가진 평판(平板)의 이축하중하(二軸荷重下)에서의 응력분포(應力分布) (The Stress Distribution in a Flat Plate with a Reinforced Circular Hole under Biaxial Loading)

  • 임상전
    • 대한조선학회지
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 1971
  • The effect of reinforced circular hole in a flat plate under general biaxial loading conditions is considered. The reinforcement is achieved by attaching a circular ring of uniform rectangular cross section along the boundary of the hole. This investigation includes a theoretical solution and an experimental conformation. In the theoretical analysis, Gurney's method is used to obtain a solution for the stress distribution and the solution is expressed in a general form, so that it can be applicable to the case of general biaxial loading and general values of Poisson's ratios. In the experimental work a systematic series of photoelastic models, as shown in Fig.5 and Table 1, were analyzed on polariscope. The experimental results were in good agreement with the theoretical ones, as shown in Fig.8 and 9. The conclusions derived are as follows: 1) The theoretical results, given in Eq. $(1){\sim}(5)$, are sufficient in accuracy for the engineering design purpose. 2) The stress concentration factor decreases as the ratio n increases, but not significant beyond n=3. 3) The stress concentration factor increase as the ratio m increases, but not significant below m=0.7.

  • PDF

쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델 (Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads)

  • 김동호;김경진;이봉학;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

핀하중을 받는 탄소섬유/에폭시 복합적층판의 인장거동 (Tensile Behavior of Pin-Loaded Carbon/Epoxy Composite Laminates)

  • 박동창;황운봉;한경섭
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2518-2534
    • /
    • 1993
  • Fracture behavior of carbon/epoxy laminates under pin loading is studied experimentally and analytically. Effects of ratios of specimen width to hole diameter and edge distance to hole diameter on bearing strength are investigated. Characteristic length of the laminates obtained using HK model has good agreement with the experimental data. The larger hole size induced, the lower bearing strength is measured under pin loading . The bearing strength and failure mode could be predicted using HK model and Zhangs analytical solution of stress distribution around a pin loaded hole. Chamis' prediction method of bearing strength is also considered to predict failure mode and bearing strength. A modification of Chamis' method is made using the factor of rupturc. The predicted bearing strength by the modified method is reasonably close to the experimental data.

신경회로망을 이용한 경전철 차량추진용 선형유도전동기의 설계변수 최적화 (Optimization of Design Parameters of a Linear Induction Motor for the propulsion of Metro)

  • 임달호;박승찬;이일호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.55-58
    • /
    • 1995
  • An optimum design method of electric machines using neural network is presented. In this method, two multi - layer perceptrons of analysis and design neural network are used in optimizing process. A preliminary model of linear induction motor for subway is designed by the electric and magnetic loading distribution method and then optimized by presented method.

  • PDF

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.