• Title/Summary/Keyword: Loading Condition

Search Result 1,877, Processing Time 0.03 seconds

Effects of the Growth and Production Phase on Manure Production and Compositions in Holstein Dairy Cattle (젖소의 성장 및 생산 단계에 따른 분뇨배설량 및 성분의 변화)

  • Lee, Hyun-June;Lee, Wang-Shik;Kim, Hyeon-Shup;Cho, Won-Mo;Yang, Seung-Hak;Ki, Kwang-Seok;Kim, Sang-Bum;Park, Joong-Kook
    • Journal of Animal Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 2011
  • This work was carried out to investigate the quantity of manure excreta and characteristics in growth and production phase of Holstein dairy cattle. The average manure production of dairy cattle under condition of ad libitum feeding was 41.5 kg/head/day (feces 24.9, urine 16.4 kg). The average moisture contents of feces and urine were 85.0% and 93.9%, respectively. Water pollutant concentration, $BOD_5$, $COD_{Mn}$ and SS excreted from dairy cattle were 15,444 mg/${\ell}$, 53,159 mg/${\ell}$, and 40,528 mg/${\ell}$ in feces and 8,454 mg/${\ell}$1,116 mg/${\ell}$, and 962 mg/${\ell}$in urine, respectively. And The daily loading amount of $BOD_5$, $COD_{Mn}$, SS in dairy cattle manure were 523 g, 1,416 g and 1,025 g, respectively. N, P and K contents of manure produced by dairy cattle were 0.33, 0.49 and 0.20% in feces, and 1.02, 0.27 and 1.03 in urine, respectively. In the concentrations of mineral and heavy metal of manure, Ca, Na and Mg contents were 1.56, 0.24 and 0.69%, and Zn, Cu, Cr, Pb and As were 69.23, 19.14, 2.89, 7.73 and 2.94 ppm, respectively. In conclusion, Dairy farms can be estimated optimum nutrient and pollutant balance to effectively manage the manure produced.

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition (가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립)

  • Pak, JaeIn;Ra, Jae In-
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.

Estimation of resistance coefficient of PHC bored pile by Load Test II (재하시험에 의한 PHC 매입말뚝의 저항계수 산정 II)

  • Park, Jong-Bae;Park, Yong-Boo;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • In Europe and the United States, the use of limit states design has almost been established for pile foundation design. According to the global trend, the Ministry of Land, Transport and Maritime Affairs has established the basic design criteria of the bridge under the limit state design method. However, it is difficult to reflect on the design right now because of lack of research on resistance coefficient of the pile method and ground condition. In this study, to obtain the resistance coefficient of PHC bored pile which is widely used in Korea, the bearing capacity calculated by the LH design standard and the bridge design standard method, the static load test(21 times) and the dynamic load test(EOID 21 times, Restrike 21) The reliability analysis was performed on the results. The analysis of the resistance coefficient of PHC bored pile by loading test was analyzed by adding more than two times data. As a result, the resistance coefficient obtained from the static load test(ultimate bearing capacity) was 0.64 ~ 0.83 according to the design formula and the target reliability index, and the resistance coefficient obtained from the dynamic load test(ultimate bearing capacity) was 0.42~0.55. Respectively. The resistance coefficient obtained from the modified bearing capacity of dynamic load test(EOID's ultimate end bearing capacity + restrike's ultimate skin bearing capacity) was 0.55~0.71, which was reduced to about 14% when compared with the resistance coefficient obtained by the static load test(ultimate bearing capacity). As a result of the addition of the data, the resistivity coefficient was not changed significantly, even if the data were increased more than 2 times by the same value or 0.04 as the previous resistance coefficient. In conclusion, the overall resistance coefficient calculated by the static load test and dynamic load tests in this study is larger than the resistance coefficient of 0.3 suggested by the bridge design standard(2015).

Is the UU Stitch Really Alternative to Modified MA (Mason-Allen) Stitch for Rotator Cuff Repair? - Biomechanical Comparative Study of UU to Modified MA Stitch - (회전근 개 파열의 봉합에서 UU 봉합법은 변형된 MA(Mason-Allen) 봉합법을 대치할 수 있는가? - UU 봉합법과 변형된 MA 봉합법의 생역학적 비교-)

  • Friedman, Darren J;Ko, Sang-Hun;Park, Ki-Bong;Jun, Hyung-Min;Kim, Tae-Won;Lim, Hyun-Woo;Yum, Young-Jin
    • Clinics in Shoulder and Elbow
    • /
    • v.12 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • Purpose: In arthroscopic rotator cuff repairs there are generally weak link in tendon suture interface, arthroscopic rotator cuff repairs can have higher retear rates than open repairs. The purpose of this study was to compare the strength of UU (Ulsan University) suture than open modified MA (Mason-Allen) suture when suture anchored into bone. Materials and Methods: The human supraspinatus tendons were harvested from the shoulder of the cadaver and split in 2 times, producing four tendons per one shoulder, for a total of 24 specimens. Two suture configurations (UU, MA) were randomized and checked on each set of tendons. Specimens were cyclically loaded under force control between 5 and 30 N at 0.25 Hz for fifty cycles. Each specimen was loaded to failure under displacement control at 1 mm/sec. Cyclic elongation, peak to peak displacement, stiffness, ultimate tensile load, mode of failure were checked. Results: No significant difference was found between two suture configuration with respect to peak to peak displacement, cyclic elongation, and stiffness. With regard to ultimate failure load, there were no significant difference statistically between the UU suture and modified MA suture (109.4 N, 110.6 N). The most common mode of failure between both sutures was suture pull-out through the tendon. Conclusion: The UU suture and modified MA suture produced similar biomechanical properties.

Liposome Formation and Active Ingredient Capsulation on the Supercritical Condition (초임계 상태에서 리포좀의 생성 및 약물봉입)

  • Mun, Yong-Jun;Cha, Joo-Hwan;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1687-1698
    • /
    • 2021
  • This study is to produce multiple layers of liposomes in a supercritical state and encapsulates active ingredients in order to stably encapsulate thermodynamically unstable active ingredients. In order to form a liposome in a supercritical state, a mixed surfactant development including vegetable-derived hydrogenated phosphatidyl choline and their delivative, hydrogenated sucrose distearate was synthesized as high purity. It describes a manufacturing method of injecting liquid carbon dioxide into a reactor to create a supercritical state and stirring to produce a giant liposome, and adding and loading genistein and quercetin. The HLB of the mixed lipid complex (SC-Lipid Complex) was 12.50, and multiple layers of liposome vesicles were formed even at very low concentrations. This surfactant had a specific odor with a pale yellow flake, the specific gravity was 0.972, and the acid value was 0.12, indicating that it was synthesized with high purity. As a result of the emulsifying capacity experiment using 20 wt% capric/capric triglyceride and triethylhexanoin using SC-Lipid Complex, it was found to have 96.2% emulsifying power. SC LIPOSOME GENISTEIN was confirmed that a multi-layer liposome vesicle was formed through a transmission electron microscope (Cryo-TEM) for the supercritical liposome encapsulated with genistein. The primary liposome particle size in which genistein was encapsulated was 253.9 nm, and the secondary capsule size was 18.2 ㎛. Using genistein as the standard substance, the encapsulation efficiency of supercritical liposomes was 99.5%, and general liposomes were found to have an efficiency of 93.6%. In addition, the antioxidant activity experiment in which quercetin was sealed was confirmed by the DPPH method, and it was found that the supercritical liposome significantly maintained excellent antioxidant activity. In this study, thermodynamically unstable raw materials were sealed into liposomes without organic solvents in a supercritical state. Based on these results, it is expected that it can be applied to various forms such as highly functional skincare cosmetics, makeup cosmetics, and scalp protection cosmetics.

Influence of crown-to-implant ratio of short vs long implants on implant stability and marginal bone loss in the mandibular single molar implant (하악 구치 단일임플란트 수복에서 임플란트 길이에 따른 치관-임플란트 비율이 임플란트안정성 및 변연골소실에 주는 영향)

  • Baek, Yeon-Wha;Kim, Bongju;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.280-289
    • /
    • 2018
  • Purpose: The purpose of this randomized clinical trial is to determine whether implant length and the crown-to-implant (C/I) ratio influence implant stability and peri-implant marginal bone loss (MBL). Materials and Methods: 46 patients with single tooth missing in the posterior molar region of the mandible were included in this study. 19 implants (CMI IS-III $active^{(R)}$ long implant) of 5.0 mm diameter and 10 mm length were installed for the control group, while 27 implants (CMI IS-III $active^{(R)}$ short implant) of 5.5 mm diameter and 6.6, 7.3 or 8.5 mm length were placed for the experimental group. Each implant was inserted and immediately loaded using the digitally pre-fabricated surgical template and provisional restoration. The CAD-CAM monolithic zirconia crown was fabricated at 3 months after the surgery as a definitive restoration. The ISQ value and the MBL was measured at 48 weeks after the surgery. The correlation between the C/I ratio, MBL, and secondary implant stability was analyzed. Results: Successful results in terms of ISQ and MBL were achieved with both groups. There was no significant difference between the groups in terms of ISQ values and MBL at 48 weeks after the surgery (P > 0.05). No significant correlation was found between the C/I ratio and secondary stability as well as the C/I ratio and the MBL (P > 0.05). Conclusion: The influence of C/I ratio in both groups was not shown on the stability nor the marginal bone loss in implants supporting single crown of the mandible. Short implant could be a preferable alternative option in the reduced bone height mandible under the limited condition despite its higher C/I ratio.

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF