• Title/Summary/Keyword: Load-settlement characteristics

Search Result 168, Processing Time 0.03 seconds

The Settlement Characteristics of Large Drilled Shafts Embedded into the Rocks (암반에 근입된 대구경 현장타설말뚝의 침하특성)

  • Hong, Won-Pyo;Yea, Geu-Guwen;Nam, Jung-Man;Lee, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this study is to investigate the settlement characteristics of large drilled shafts embedded into bed rocks. To perform this research, 35 pile load test results for the large drilled shafts are used, because these deep foundations generally used as substructure systems for grand bridges. In case of the yield load can not be easily determined by load(P)-settlement(S) curve from the pile load test at the maximum loads, the standard settlements which can determine a yield load is established. The residual settlement equation of pile embedded in gneiss and igneous rocks is presented in this study. Also a equation is proposed to characterize the relationship between loads and elastic settlements in pile load tests on the large drilled shaft embedded into bedrock. Then, large drilled shaft's settlement characteristics are examined on pile length, pile diameter and pile's socked depth into rock at the pile tip.

  • PDF

Long-term Settlement Characteristics of Closed Landfill (사용종료 쓰레기매립지의 장기침하특성 분석)

  • 정하익;진현식;김상근;이강민;김태섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.605-610
    • /
    • 2002
  • Waste body settlement is an important aspect of management of landfill sites both during the operational and the post-closure phases. Settlement in landfill waste is caused by combination of load, creep and biodegradation induced effects. In this paper, settlement characteristics of closed waste landfill were studied by analyzing in situ measured data and computer simulation technique. Techniques for the analysis of load-induced and creep settlement, and for their implementation, can be adapted for landfill waste. The estimate of settlements from models shows a increase according to time.

  • PDF

Analysis of Load-Settlement Curves in Driven and Embedded Piles (항타 및 매입말뚝의 하중-침하량 곡선의 분석)

  • 천병식;조천환
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.61-70
    • /
    • 1997
  • Although the load -settlement curve characteristics of embedded piles are different from those of driven piles, for the determination of their allowable loads the same analysis method has been adopted without any considerations. According to the related domestic chi teria, the analysis methods of load-settlement curve have some conflicts among themselves and have several vague points in obtaining the allowable capacity from ultimate or yield capacity. In order to solve those problems, the relevant literatures were reviewed. And also the result of 106 pile load tests was analysed. Analysis result indicates that analysis met hods of the load-settlement curve based on single mathematical curve are not suitable for the general analysis method of load-settlement curves due to their various characteristics. As a result, the appropriate analysis methods and safety factors for the determination of allowable capacity of pile are suggested in this paper.

  • PDF

Analysis of load sharing characteristics for a piled raft foundation

  • Ko, Junyoung;Cho, Jaeyeon;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.449-461
    • /
    • 2018
  • The load sharing ratio (${\alpha}_{pr}$) of piles is one of the most common problems in the preliminary design of piled raft foundations. A series of 3D numerical analysis are conducted so that special attentions are given to load sharing characteristics under varying conditions, such as pile configuration, pile diameter, pile length, raft thickness, and settlement level. Based on the 3D FE analysis, influencing factors on load sharing behavior of piled raft are investigated. As a result, it is shown that the load sharing ratio of piled raft decreases with increasing settlement level. The load sharing ratio is not only highly dependent on the system geometries of the foundation but also on the settlement level. Based on the results of parametric studies, the load sharing ratio is proposed as a function of the various influencing factors. In addition, the parametric analyses suggest that the load sharing ratios to minimize the differential settlement of piled raft are ranging from 15 to 48% for friction pile and from 15 to 54% for end-bearing pile. The recommendations can provide a basis for an optimum design that would be applicable to piled rafts taking into account the load sharing characteristics.

Studies on the Long-term Consolidation Characteristics of Peats (이탄의 장기압밀특성에 관한 연구)

  • 김재영;주재우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.106-116
    • /
    • 1989
  • This study aims at scrutinizing the long4errn consolidation characteristics of peats sampled at three different regions of Chonbuk province. The standard consolidation test and the single load consolidation test were performed about these samples and especially in case of the latter the loading period was 350 days. The main condusions analyzed are as follows. 1. Void ratio showed much greater values than that of the general clay and was decresed greatly according to the increase of the load. 2. In case of the relationship between the sefflement and the long-term settlement time the rate of settlement increment became great according to the increase of the load step and the long4erm settlement became linely proportional to the logarithm of time alter 10 minutes. 3. The linear correlation was showed between the long4erm settlement time and the void ratio and therefore equations by regression analysis were derived in order to estimate the long-term settlement The slope of straight lines increased according th the increase of the load step and secondary consolidation coefficients ranged from 0.04-0.27. 4. The secondary consolidation coeffcient became linealy proportional to the compression index and the ratio of Ca to CC was 0.072. 5. The period required in ending the primary consolidation was about 10 minutes and alter that the secondary consolidation coefficient appeared to have constant value. Therefore the secondary consolidation coefficient was judged to be used as a significant factor in estimating the long4erm settlement. 6. In case of the single load consolidation test the secondary consolidation coefficient showed the tendancy increasing according to the increase of the consolidation pressure.

  • PDF

Settlement Characteristics of Large Drilled Shafts Embedded in Bed Rocks (암반에 근입된 대구경 현장타설말뚝의 침하특성)

  • Hong Won-Pyo;Yea Geu-Guwen;Nam Jung-Man;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.111-122
    • /
    • 2005
  • The data on the pile load tests performed on 35 large drilled shafts are analyzed to investigate the load-settlement characteristics of large drilled shafts embedded in bed rocks. Generally, the settlement of large drilled shafts embedded in bed rocks is too small to determine the ultimated load with application of the regulation in design code for either the total settlement or the residual settlement. Therefore, to determine the yield load of large drilled shafts embedded in bed rocks, p(load)-logS (settlement) curve method, which has been proposed originally for the driven pile, was applied to the investigation on the data of the pile load tests. This technique shows that the yield load can be determined accurately and easily rather than other conventional techniques such as P-S, logp-logS, S-logt, and P-S curve methods. An empirical equation is proposed to represent the relationship between pile load and settlement before the yield loading condition. And the settlement of piles was related with the depth embedded in rock as well as rock properties. Based on the investigation on the data of pile load tests, the resonable regulations f3r both the total settlement and the residual settlement are proposed to determine the yield load of large drilled shafts embedded in bed rocks.

Mechanical characteristics + differential settlement of CFG pile and cement-soil compacted pile about composite foundation under train load

  • Cheng, Xuansheng;Liu, Gongning;Gong, Lijun;Zhou, Xinhai;Shi, Baozhen
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • In recent years, the stability, safety and comfort of trains has received increased attention. The mechanical characteristics and differential settlement of the foundation are the main problems studied in high-speed railway research. The mechanical characteristics and differential settlement of the foundation are greatly affected by the ground treatment. Additionally, the effects of train load and earthquakes have a great impact. The dynamic action of the train will increase the vibration acceleration of the foundation and increase the cumulative deformation, and the earthquake action will affect the stability of the substructure. Earthquakes have an important practical significance for the dynamic analysis of the railway operation stage; therefore, considering the impact of earthquakes on the railway substructure stability has engineering significance. In this paper, finite element model of the CFG (Cement Fly-ash Gravel) pile + cement-soil compacted pile about composite foundation is established, and manual numerical incentive method is selected as the simulation principle. The mechanical characteristics and differential settlement of CFG pile + cement-soil compacted pile about composite foundation under train load are studied. The results show: under the train load, the neutral point of the side friction about CFG pile is located at nearly 7/8 of the pile length; the vertical dynamic stress-time history curves of the cement-soil compacted pile, CFG pile and soil between piles are all regular serrated shape, the vertical dynamic stress of CFG pile changes greatly, but the vertical dynamic stress of cement-soil compacted pile and soil between piles does not change much; the vertical displacement of CFG pile, cement-soil compacted pile and soil between piles change very little.

Load Sharing Analysis of Piled Rafts Based on Non-linear Load-Settlement Characteristics (Piled Raft 기초의 비선형 하중-침하 특성을 고려한 하중분담 해석)

  • Choi, Kyu-Jin;Park, Dong-Gyu;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.33-40
    • /
    • 2012
  • The design of Piled Raft foundations considering the load sharing between raft and piles provides a more economical solution than the conventional design approach based on bearing capacity of piles only. Generally, numerical methods are used to analyze the behavior of Piled Rafts due to its complexity and load sharing ratio is also estimated by numerical methods about some limited cases under specific load level and soil conditions. In this study, a method to estimate the load sharing between the raft and piles was developed which is based on load-settlement characteristics of foundation elements. Normalized load-settlement curves of the raft and pile groups were derived individually, and the relationship between load sharing ratio and foundation settlement was proposed by using these curves. For each load-settlement curves, hyperbolic type was adopted in order to describe the non-linear behavior of foundations. Centrifuge test results were compared with the results from proposed method, and the trends of variation of load sharing ratio with settlement presented from both were similar.

Application of Scale Effect in Estimating Bearing Capacity and Settlement of Footing from Plate-Load Test (평판재하시험으로부터 실제기초의 지지력 및 침하량 산정시 Scale Effect)

  • 정형식;김도열
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.350-357
    • /
    • 2002
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were peformed with four different sizes of square plate, which is B=10, 15, 20 and 25cm respectively, on five different kinds of subsoil, which is pure sand(100:0), sand-clay mixed soil(75:25, 50:50, 25:75), and pure clay(0:100). Based on the analyzed results, this paper also proposed a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Applying the formular proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

  • PDF

Load-Settlement Characteristics of Drilled Shafts Reinforced by Rockbolts (락볼트로 보강된 심형기초의 하중-침하 분석)

  • 윤경식;이대수;정상섬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.366-373
    • /
    • 2002
  • This paper describes the load distribution and settlement of rockbolted-drilled shafts subjected to axial and lateral loads with the view to shortening the embedded depth of the pile shaft. The emphasis was on quantifying the reinforcing effects of rockbolts placed from the shafts to surrounding weathered rocks based on small-scale model tests peformed on instrumented piles. The major influencing parameters on reinforcing drilled shaft behavior are the number, the positions on the shaft, the grade, and the inclination angle at which the rockbolts are placed. The model tests was 1/40 scaled simulations of the behavior of the drilled shafts with varying combinations of the major influencing parameters. The incremental effects of reinforcement based on the various parameters have been weighed against load transfer characteristics before and after rockbolt installations.

  • PDF