• Title/Summary/Keyword: Load-displacement curves

Search Result 290, Processing Time 0.026 seconds

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.

A Study on Applicability of Tensile Constitutive Model of Steel Fiber Reinforced Concrete in Model Code 2010 (Model Code 2010에 제시된 강섬유 보강 콘크리트의 인장 구성모델 적용성 고찰)

  • Yeo, Dong-Jin;Kang, Duk-Man;Lee, Myung-Seok;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.581-592
    • /
    • 2016
  • Tensile constitutive stress-strain model of steel fiber reinforced concrete (SFRC) in fib MC2010 was investigated. In order to model tensile behavior of SFRC, three point loading flexural tests were conducted on notched small beams according to BE-EN-14651. Design parameters for the constitutive model were determined from the flexural tests. Flexural test and finite element analysis were conducted on large SFRC beam without steel reinforcements and compared with each other. In addition, parametric study on the effect of compressive and tensile model, and characteristic length on flexural behavior of the SFRC beam was conducted also. In results, pre-peak load-displacement curves from the FE analysis was close to experimental curves but significant difference was shown in post-peak behavior. The reason of the difference is originated from the fact that the fiber distribution and orientation were not being properly considered in the MC2010 model. This study shows that modification and detail explanations on the orientation factor K in MC2010 might require to better reproduce the behaviour of large scale SFRC beams.

Strength and Lateral Torsional Behavior of Horizontally Curved Steel I-Girders Subjected to Equal End Moments (양단 균일 모멘트를 받는 수평곡선 I형 강재 거더의 횡-비틀림 거동 및 강도 산정 방안)

  • Lee, Keesei;Lee, Manseop;Choi, Junho;Kang, Youngjong
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A curved member should resist bending and torsional moments simultaneously even though the primary load is usually supposed to be gravitational load. The torsional moment causes complicate stress state and also can result in early yielding of material to reduce member strength. According to analysis results, the strength of a curved member that has 45 degrees of subtended angle could decrease more than 50% compare to straight girder. Nevertheless, there have been very few of researches related with ultimate strength of curved girders. In this study, various kinds of stiffness about bending, pure torsion and warping were considered with a number of models in order to verify the main factor that affects ultimate behavior of curved girder. Lateral and rotational displacement of curved member were introduced as lateral-torsional-vertical behavior and bending-torsional moment interaction curve was derived. Finally, a strength equation for ultimate moment of horizontally curved steel I-girders subjected to equal end moments based on the interaction curves. The equation could take account of the effect of curvature, unbraced length and sectional properties.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay (점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발)

  • Lee, Si-Hoon;Lee, Ju-Hyung;Tran, Xuan Nghiem;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.

Simulation and Experimental Investigation of Reverse Drawing Process for Manufacture of High-Capacity Aluminum Liner (대용량 알루미늄 라이너의 성형을 위한 역 드로잉 공정 해석 및 실험)

  • Lee, Seungyun;Cho, Sungmin;Lee, Sunkyu;Lyu, Geunjun;Kim, Soyoung;Kang, Sunghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.78-84
    • /
    • 2016
  • In this work, finite element investigations were carried out to optimize reverse drawing process design for manufacture of high-capacity aluminum liner used in fuel cell vehicle. The tensile tests with aluminum alloy Al6061 annealed at $350^{\circ}C$ were carried out to obtain the flow stresses. In order to estimate more accurate flow stresses after necking, the flow stresses were estimated from the comparison of load vs. displacement curves which were obtained from experimental and simulation results of tensile tests. In case of finite element analyses of reverse drawing processes, it was focused on the effects of process designs such as punch and die designs, blank holding force, drawing ratio and the clearance between the punch and blank holder on the generation of wrinkle and fracture of the blank and partially heated punch. However, it was revealed that experimental results still show the fracture at the end of 2nd drawn cup, although partially heated punch is used. Nevertheless, the drawn cup can be used because the sufficient length of the drawn cup for the next flow forming process and spinning process was obtained.

Fracture Properties of Concrete by using the J-integral (J-적분 평가를 이용한 콘크리트 파괴 특성)

  • 최신호;계해주;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.371-378
    • /
    • 2001
  • Recently, the parameters, models, and experimentations, which evaluate the fracture properties of concrete, have been proposed by many researchers, and their developments allow us to analyze the non-linear and quasi-brittle fracture mechanisms. In this paper, a brief treatment of the fracture parameters was presented and the experiments of 3-point bending tests were conducted to compare J-integral($J_{Ic}$ /) with other parameters($K_{Ic}$ , $G_{v}$ , and $G_{F}$ ). The change of parameter values according to the width and notch length of concrete beam specimens was also considered. The load-displacement curves are used to experimentally measure concrete fracture toughness. From the results of experiment, it is noted that the value of $GF$ and tic decreases as the notch depth increases and $G_{F}$ is less sensitive than $J_{Ic}$ . Therefore, the former is more appropriate to use as the concrete fracture toughness parameter. The values of $v_{v}$ and $J_{Ic}$ increase when the width of concrete specimens increase from 75 mm to 150 mm. Therefore, the effects of specimen width need to be considered in determining the concrete fracture toughness.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.

A Review on Ultimate Lateral Capacity Prediction of Rigid Drilled Shafts Installed in Sand (사질토에 설치된 강성현장타설말뚝의 극한수평지지력 예측에 관한 재고)

  • Cho Nam Jun;Kulhawy F.H
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • An understanding of soil-structure interaction is the key to rational and economical design for laterally loaded drilled shafts. It is very difficult to formulate the ultimate lateral capacity into a general equation because of the inherent soil nonlincarity, nonhomogeneity, and complexity enhanced by the three dimensional and asymmetric nature of the problem though extensive research works on the behavior of deep foundations subjected to lateral loads have been conducted for several decades. This study reviews the four most well known methods (i.e., Reese, Broms, Hansen, and Davidson) among many design methods according to the specific site conditions, the drilled shaft geometric characteristics (D/B ratios), and the loading conditions. And the hyperbolic lateral capacities (H$_h$) interpreted by the hyperbolic transformation of the load-displacement curves obtained from model tests carried out as a part of this research have been compared with the ultimate lateral capacities (Hu) predicted by the four methods. The H$_u$ / H$_h$ ratios from Reese's and Hansen's methods are 0.966 and 1.015, respectively, which shows both the two methods yield results very close to the test results. Whereas the H$_u$ predicted by Davidson's method is larger than H$_h$ by about $30\%$, the C.0.V. of the predicted lateral capacities by Davidson is the smallest among the four. Broms' method, the simplest among the few methods, gives H$_u$ / H$_h$ : 0.896, which estimates the ultimate lateral capacity smaller than the others because some other resisting sources against lateral loading are neglected in this method. But it results in one of the most reliable methods with the smallest S.D. in predicting the ultimate lateral capacity. Conclusively, none of the four can be superior to the others in a sense of the accuracy of predicting the ultimate lateral capacity. Also, regardless of how sophisticated or complicated the calculating procedures are, the reliability in the lateral capacity predictions seems to be a different issue.