• 제목/요약/키워드: Load-displacement curves

검색결과 290건 처리시간 0.031초

압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험 (Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction)

  • 김용배;이종섭;이상목;박훈재;이근안
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.

대기 플라즈마 용사공정을 이용한 Cu계 벌크 비정질 금속 코팅의 미세조직 분석과 나노 압입시험을 이용한 상 분석 (Microstructure Evolution of Cu-based BMG Coating during APS Process and Phase Analysis by Nano-indentation Test)

  • 김정환;강기철;윤상훈;나현택;이창희
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, Cu-based bulk metallic glass (BMG) coatings were deposited by atmospheric plasma spraying (APS) process with different process conditions (with- and without hydrogen gas). As adding the hydrogen gas, thermal energy in the plasma flame increased and induced difference in the melting state of the Cu-based BMG particles. The microstructure and mechanical properties of the coatings were analyzed using a scanning electron microscope (SEM) with an energy dispersive spectroscopy (EDS) and nano-indentation tester in the light of phase analysis. It was elucidated by the nano-indentation tests that un-melted region was a mainly amorphous phase which showed discrete plasticity observed as the flow serrations on the load.displacement (P - h) curves, and the curves of solidified region showed lower flow serrations as amorphous phase mingled with crystalline phase. Oxides produced during the spraying process had the highest hardness value among the phases and were well mixed with other phases resulted from the increase in melting degree.

미소시험편을 이용한 고온 크리프 특성 평가법 개발 (Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen)

  • 유효선;백승세;이송인;하정수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF

지진에 대한 안전성 평가를 위한 깎기비탈면의 취약도 곡선 작성 (Development of Fragility Curves for Seismic Stability Evaluation of Cut-slopes)

  • 박노석;조성은
    • 한국지반공학회논문집
    • /
    • 제33권7호
    • /
    • pp.29-41
    • /
    • 2017
  • 지진파로 인하여 발생되는 지진하중은 발생 특성상 예측이 불가능한 불확실성이 존재한다. 또한 비탈면과 같은 지반구조물에는 지반정수의 불확실성이 존재한다. 따라서 이러한 불확실성들을 확률론적 해석으로 고려할 필요가 있다. 본 연구에서는 깎기비탈면에 대하여 확률론적 해석으로 구조물의 안전성을 평가하는 대표적인 방법인 취약도 곡선을 작성하는 방법을 제시하였다. 지반정수의 불확실성을 고려한 취약도 곡선은 Monte Carlo Simulation 기법을 이용해 유사정적 해석으로 작성하였다. 지진파의 불확실성을 고려한 취약도 곡선은 30개의 실제 발생한 지진파로 시간이력해석을 실시하여 Newmark-Type 변위 해석으로 작성하였으며, 취약도 곡선은 최대 우도 추정법을 이용하여 대수정규분포를 갖는 누적 확률분포 함수로 나타내었다.

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험 (Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load)

  • 문병욱;민경원
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.641-652
    • /
    • 2007
  • 본 논문에서는 풍하중에 대한 기존 송전철탑의 좌굴 및 구조적 안전성을 평가하기 위해서 축소부분구조 실험을 수행하였다. 원 송전철탑에 작용하는 중력 및 풍하중을 재현하기 위해서 1/2크기의 상사법칙을 적용한 축소모델의 상부에 설치된 삼각형태의 지그를 이용하여 가력하는 방법을 고안하였다. 설계하중에 대한 실험체의 안정성을 평가하기 위해서 예비수치 해석을 수행한 결과, 계산된 주주재의 축력은 허용좌굴하중의 $80{\sim}90%$사이에 분포하고 있음을 확인하였다. 최대허용좌굴 하중의 270%까지 가력한 결과, 주주재의 면외거동을 구속하는데 취약한 절점에서 발생한 국부좌굴로 인하여 송전철탑이 파괴되었다. 하중-변위 곡선, 변위, 부재별 변형률을 검토한 결과, 이러한 국부좌굴의 발생은 동일한 단면내에서도 휨모멘트로 인해 항복응력에 도달하는 시간이 위치별로 다르기 때문에 변형의 불균형에 의해서 발생한 부가적인 편심에 기인한 것으로 판단된다.

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

An Evaluation of Cast Stainless Steel (CF8M) Fracture Toughness Caused by Thermal Aging at 43$0^{\circ}C$

  • Kwon, Jae-Do;Ihn, Jae-Hyuj;Park, Joong-Cheul;Park, Sung-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.902-910
    • /
    • 2002
  • Cast stainless steel may experience embrittlement when it is exposed approximately to 300$\^{C}$ for a long period. In the present investigation, the three classes of the thermally-aged CF8M specimen were prepared using an artificially-accelerated aging method. After the specimens were held for 300, 1800 and 3600hrs. at 430$\^{C}$, respectively, the specimens were quenched in water which is at room temperature. Load versus load line displacement curves and J-R curves were obtained using the unloading compliance method. talc values were obtained using the ASTM E813-87 and ASTM E 813-81 methods. In addition to these methods, talc values were obtained using the SZW (stretch zone width) method described in JSME S 001-1981. The results of the unloading compliance method are J$\_$Q/=543.9kJ/㎡ for virgin materials. The values of J$\_$IC/ for the degraded materials at 300, 1800 and 3600hrs. are obtained 369.25kJ/㎡, 311.02kJ/㎡, 276.7kJ/㎡, respectively. The results obtained by the SZW method are compared with those obtained by the unloading compliance method. Both results are quite similar. Through the elastic-plastic fracture toughness test, it is found that the value of loc is decreased with an increase of the aging time.

주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구 (III) - 탄소성 파괴인성 평가 - (A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M) (III) - Evaluation of Elastic-Plastic Fracture Toughness -)

  • 권재도;인재현;박중철;최성종;박윤원
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2405-2412
    • /
    • 2000
  • A cast stainless steel may experience an embrittlement when it is exposed to approximately 30$0^{\circ}C$ for long period. In the present investigation, The three classes of the thermally aged CF8M specimie n are prepared using an artificially accelerated aging method. Namely, after the specimen are held for 300, 1800 and 3600hrs. at 43$0^{\circ}C$ respectively, the specimens are quenched in water to room temperature. Load versus load line displacement curves and J-R curves are obtained using the unloading compliance method. $J_{IC}$ values are obtained following ASTM E 813-87 and ASTM E 813-81 methods. In addition to these methods, JIC values are obtained using SZW(stretch zone width) method described in JSME S 001-1981. The results of the unloading compliance method are $J_Q$=485.7 kJ/m$^2$ for virgin material, $J_{IC}$ of the degraded materials associated with 300, 1800 and 3600hrs are obtained 369.25 kJ/m$^2$, 311.02 kJ/m$^2$, 276.7 kJ/m$^2$, respectively. The results of SZW method are similar to those of the unloading compliance method. Through the elastic-plastic fracture toughness test, it is found that the value of $J_{IC}$ is decreased with increasing of the aging time. The results obtained through the investigation can provide reference data for a leak before break(LBB) of reactor coolant system of nuclear power plants.