• Title/Summary/Keyword: Load velocity

Search Result 1,212, Processing Time 0.031 seconds

A Study on Aerodynamic Loads of a Deploying Wing Launched from a Mobile Platform (이동식 플랫폼에서 발사되는 비행체의 날개 전개 공력 하중에 관한 연구)

  • Lee, Younghwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.353-359
    • /
    • 2019
  • In this study, a aerodynamic loads prediction to design a deploying device of folded fin was introduced. In general, resultant flow conditions around the fin are used to obtain deploying moments and required energy. However, when it comes to the air vehicles launched from a mobile platform, more specific flow conditions can be provided. With the conditions, the design criteria can be calculated more realistically. In this study, therefore, aerodynamic moments induced by aerodynamic loads and energy required in deployment were calculated using wind-over-deck(WOD) velocity, combination of a platform velocity and a wind velocity. For the calculation, wind tunnel test was conducted on various angle of attack, side slip angles, and folding angles. It was found that the aerodynamic moments and the energy required in deployment using the non-uniform flow due to the velocity components were less than those using the uniform flow without the components.

Velocity trajectory planning for the implementation of anti-swing crane (무진동 크레인 구현을 위한 속도경로설계 연구)

  • Yoon, Ji Sup;Park, Byung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.143-152
    • /
    • 1994
  • The velocity trajectory profile of trolley is designed to minimize both swinging while transportation of load and the stop position error at the final stop position. This profile is designed to be automatically programmed by the digital control algorithm when the length of chain and the desired travel distance are given as a priori. Also, to minimize both swinging and the stop position error the anti-swing controller which improves poor damping characteristics of the crane and the stop position controller are employed. The experimentalresults of sequential adaptation of the velocity trajectory profile and these two controllers show that this control scheme has excellent control performance as compared with that of the uncontrolled crane system.

  • PDF

A new ultrasonic power generator using instantaneous current resultant control-based inverter and its control system

  • Kim, Dong-Hee;Kim, Young-Seok;Yoo, Dong-Wook;Kim, Yo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.631-636
    • /
    • 1987
  • The design of ultrasonic transducer energy processing systems requires highly reliable command featuring mechanical frequency tracking and constant velocity control of the ultrasonic transducer with an acoustic load. This paper presents a new conceptional instantaneous current resultant control base high-frequency inverter using self turn-off devices driving an electrostrictive ultrasonic transducer system and its optimum control technique, which is implemented by feed-back of the ultrasonic transducer applied voltage and instantaneous velocity of the transducer vibrating system through a Phase-Locked-Loop control scheme. The feedback voltage corresponding to instantaneous velocity is averaged over a half-period with respect to constant amplitude/constant velocity control strategy. Described are the theory of this signal detection technique and the experimental set-up.

  • PDF

A Study on Stability of the Container Crain with respect to the Direction of wind Load (풍향에 따른 고효율 갠트리 크레인의 안정성에 관한 연구)

  • Kwon S.K.;Han G.J.;Shim J.J.;Han D.S.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1984-1987
    • /
    • 2005
  • This study evaluate the statical stability of the container crane with respect to the direction of wind load which is varied between $0^{\circ}$ and $180^{\circ}$ and its average velocity is 40m/s. Using wind experimental data and a formula of wind pressure, we figured out the wind load needed to perform a finite element analysis. And we can obtain the variation of reaction forces at each supporting point according to the direction of wind load.

  • PDF

Dynamic Analysis of the Beam Subjected to the Axial Load and Moving Mass (이동질량 및 축 하중의 영향을 받는 보의 동적 거동)

  • Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.271-279
    • /
    • 2011
  • In this study, the dynamic analysis of a beam is analyzed by using the finite element method when the beam has moving mass and axial load. To consider the contact force between the moving mass and beam, coupled nonlinear equations of contact dynamics are derived, and then the weak form for the finite element method is established. The finite element computer programs based on the Lagrange multiplier method are developed to compute the contact force. Furthermore, a variety of simulations are performed for various design parameters such as moving mass velocity, compressive axial load and tension load. Finally, relations between the dynamic response and contact force are also discussed.

An adaptive control algorithm for the speed control of hydraulic-servo system (유압 서보 시스템의 속도 제어를 위한 적응제어기의 설계에 관한 연구)

  • Yun, Ji-Seop;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 1986
  • An adaptive controller which is robust to the unknown load disturbance is developed for electro-hydraulic speed control systems. Since the load disturbance degrades the performance of the controller such as a steady state error and rise time in the conventional control system, appropriate adjustment of the controller is necessary in order to obtain the desired performances. The adaptation mechanism was designed to tune the feedforward gain, based upon minimization of ITAE (integral of time-multiplied absolute error) performance. The unknown load distrubance was identified by using an analog computer from the relationship between the velocity of the hydraulic motor and the load pressure. To evaluate the performance of the controller a series of simulations and experiments were conducted for various load conditions. Both results show that the proposed adaptive controller shows abetter performance than the conventional controller in terms of the steady state error and rise time.

  • PDF

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 최철현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

The Effect of Wind Load on the Stability of a Container Crane (풍하중이 컨테이너 크레인의 안정성에 미치는 영향 분석)

  • Lee Seong Wook;Shim Jae Joon;Han Dong Seop;Park Jong Seo;Han Geun Jo;Lee Kwon Soon;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • This study was carried out to analyze the effect of direction of wind load and machinery house location on the stability of container crane loading/unloading a container on a vessel. The overturning moment of container crane under wind load at 50m/s velocity was estimated by analyzing reaction forces at each supporting point. And variations of reaction forces at each supporting point of a container crane were analyzed according to direction of wind load and machinery house location. The critical location of machinery house was also investigated to install a tie-down which has an anti-overturning function of container crane at the land side supporting point.

DESIGN OF ADAPTIVE CONTROLLER OF DC SERVO MOTOR (직류전동기의 적응 제어기 설계에 관한 연구)

  • Chang, S.G.;Won, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.25-28
    • /
    • 1987
  • Design procedure of adaptive controller with variable load condition is present and applied to velocity control of small, permanent magnet DC servo motor. The state feedback control scheme is adopted and Recursive Least Squares algorithm is used for parameter estimation. In order to reduce the time consuming. In the procedure of adaptation-gain tuning of state feedback controller, approximate curve fitting technique is applied to the relations between load condition and poles of the system, load condition and feedback gains. With this method, fast adaptation can be accomplished. It is shown that this procedure can be applied not only to variable load condition but also to variation of other system constants, for example variation of resistance and inductance etc.. Simulation results is present for both cases - variable inertia load, variable motor resistance to verify performance improvements. This design procedure produces an adaptive con troller which is feasible for implementation with microprocessor by reducing calculation time.

  • PDF

A Study on the Characteristic of the Hydrostatic Bearing in the Hydraulic Cylinder (유압실린더내 정압베어링의 특성에 관한 연구)

  • Kang, Hyung-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.522-527
    • /
    • 2008
  • On designing of hydrostatic bearing, load, quantity of oil, stiffness and friction load are considered as basic characteristics. For the analysis of these basic characteristics, pressure distribution by oil film is obtained. Speed of piston, clearance, leakage of oil, eccentricity, shape and roughness of bearing affect the results which are the analysis of basic characteristics of load, quantity of oil, stiffness and friction load. The relationship among those factors are required for optimum designing of hydrostatic bearing for machining tool. Reynold's Equation is calculated through finite element method. Load, leakage of quantity and pressure distribution as variation of length, land length ratio, eccentricity and axial velocity of bearing are investigated. Then optimum design variables are obtained.