• Title/Summary/Keyword: Load velocity

Search Result 1,212, Processing Time 0.029 seconds

A Study of Automatic Load Estimator for a Balance Beam Controller (밸런스 빔 제어기를 이용한 자동부하 인식에 관한 연구)

  • Lee, Phill-Ju;Sa, Young-Ho;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2076-2078
    • /
    • 2002
  • This paper presents an Intelligent Balance Beam Controller(IBBC) which can estimate the inertia of load automatically. Balance Beam controller is a kind of construction tool which can control the attitude of the load hanging in the air such as a beam carried by crane. In our previous work, Balance Beam had been built to control the object in air using a mechanical gyro system having a position controllable gimbal structure. In field application the load inertia for operation is not easy to figure out because the weight and shape which determines the inertia, varies depending on the object to be carried. Therefore it is difficult for a worker to operate a Balance Beam and an accident could be caused occasionally. We designed an automatic load estimator to measure the inertia of arbitrary load by using an angular velocity sensor that is installed on the Balance Beam. Simulation results and current status for implementation are presented.

  • PDF

Evaluation of Track Impact Factor in the Conventional Line (기존선 궤도의 충격계수 산정에 관한 연구)

  • 엄주환;유영화;엄기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • In this paper, the track impact factor of conventional line was evaluated using the data for wheel load measured in field and the properties of current operating trains. The equation for track impact factor was presented through the statistical analysis of variational ratio in wheel load and compared with other design equations in domestic and foreign countries. A review on the safety of track system in conventional line was made from the relationship between the velocity and the corresponding impact factor. It was found that the impact factor from the proposed equation is a little less than the values from the equations adopted in both AREA and domestic railway, while it is same as the equation for continuous welded rail(CWR) in Japan. Therefore it could be said that the track satisfies a criteria for dynamic load caused by the train and the corresponding level of safety is guaranteed for dynamic load of the train

Study for the Design of Hydraulic Load Simulator (유압식 부하 시뮬레이터의 설계에 관한 연구)

  • 이성래;김형의;문의준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-52
    • /
    • 1994
  • Load simulator is essential to test and quality the performance of various control systems. It is good time to introduce a method to design and analyze the load simulator or since many research centers and industrial companies are trying to buy or design the load simulator. The stability, accuracy and response speed of the simulator are represented by the system parameters such as the hydraulic motor characteristics, the servovalve characteristics, supply pressure, rotational inertia, rotational spring constant, sensor and controller gains. Two design examples are shown here. A load simulator for a position control system and that for a velocity control system are designed. The goodness of the proposed method is verified by the digital computer simulations.

Vibration Suppression Control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Itoh, Masahiko;Yoshikawa, Hiroshi
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.263-270
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is related to the velocity control loop, and it is composed of reduced-order electrical and mechanical parts. Using this model, the velocity of the load is estimated, which is converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration of a waist axis of the robot arm. The function of this technique is to increase the cut-off frequency of the system and the damping ratio at the driven machine part. This control model is easily obtained from design or experimental data and its algorithm can be easily installed in a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive gear reducer and a robot arm with 5 degrees of freedom. Simulations and experiments show satisfactory control results to reduce the transient vibration at the end-effector.

Case Study of Rock Mass Classifications in Slopes (절취사면의 암질평가사례)

  • Shin, Hee-Soon;Han, Kong-Chang;Sunwoo, Choon;Song, Won-Kyong;Synn, Joong-Ho;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.109-116
    • /
    • 2000
  • Rippability refers to the ease of excavation by construction equipment. Since it is related to rock quality in terms of hardness and fracture density, which may be measured by seismic refraction surveys, correlations have been made between rippability and seismic P wave velocities. The 1-channel signal enhancement seismograph(Bison, Model 1570C) was used to measure travel time of the seismic wave through the ground, from the source to the receiver. The seismic velocity measurement was conducted with 153 lines at 5 rock slopes of Chungbuk Youngdong area. Schmidt rebound hardness test were conducted with 161 points on rock masses and the point load test also on 284 rock samples. The uniaxial compressive strength and seismic wave velocity of 60 rock specimens were measured in laboratory. These data were used to evaluate the rock quality of 5 rock slopes.

  • PDF

Modeling of Low Velocity Impact Damage in Laminated Composites (라미네이트 복합재 판의 저속 충격 손상 모델링)

  • Kong, Chang-Duk;Lee, Joung-Whan;C., Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.240-244
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate using an analytical model. The model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that occurred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

  • PDF

Modelling of Low Velocity Impact Damage In Laminated Composites

  • Lee Jounghwan;Kong Changduk;Soutis Costas
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.947-957
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate avoiding the need of the time-consuming dynamic finite element method (FEM). The analytical model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that oc curred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

Forming Simulation of the Extrusion Process by Rotating Extrusion Dies (회전압출다이를 이용한 압출가공에 관한 성형 해석)

  • Park S. M.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.124-127
    • /
    • 2004
  • In the previous experimental study about extrusion of circular product with four helical fins, it was known that product with helical fins may not to be rotated during extruding with rotating extrusion dies in spite of using twisted dies. According to the results of experiments with Plasticin material, it was anticipated that the extrusion load could be reduced if rotating dies could be used, because it needs high pressure in order to twist billet and form fin shape on the surface of product in the case of using conventional fixed helical dies. So, in this paper, according to the extrusion load analyzed by DEFORM-3D software, optimal rotational velocity of rotating dies can be obtained, and the twisting, angle of product can be analyzed during extruding product with helical fins in the case of two types of rotating of dies. The results of analysis by DEFORM-3D show that the twisting angle of product can be controlled by twisted angle of extrusion helical dies and the rotational velocity of helical dies.

  • PDF

Development of Torque Monitoring System of Induction Spindle Motor using Graphic-programming (Graphic-programming 을 이용한 주축용 유도전동기의 토크감시시스템 개발)

  • Lee, In-Hwan;Kwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.184-193
    • /
    • 2001
  • In vector control technique, stator currents of an induction motor are transformed to equivalent d-q currents in a reference frame consist of d and q axis, each of which is coincide with flux and torque direction respectively. Since the current in q-axis is related to the torque in a synchronously rotating frame, torque is estimated as a function of q-axis current and flux. In this paper, a method to estimate torque of an induction motor based on the measurement of 3-phase currents and rotating velocity of a rotor is presented. Graphic-programming is used to measure signals, to estimate the torque and to show the result in the form of user friendly graph in window environment. To stabilize the fluctuation of estimated torque caused from the small measurement error of the rotor velocity, the stator current is reconstructed in a program based on measured signals. The experimental results executed under the velocity of 500 rpm, 1500 rpm without load and 1500 rpm with load show that the proposed method estimates the torque very well.

  • PDF

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.