• Title/Summary/Keyword: Load variation rate

Search Result 224, Processing Time 0.032 seconds

Modified S-FPZ Model for a Running Crack in Concrete (콘크리트의 연속적인 균열성장에 대한 수정 특이-파괴진행대 이론)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.802-810
    • /
    • 2003
  • In this paper, the modified singular fracture process zone (S-FPZ) model is proposed to consider variation of a fracture criterion for continuous crack propagation in concrete. The fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and crack closure stress (CCS) versus crack opening displacement (COD) relationship in the FPZ. The proposed model can simulate the estimated fracture energy of experimental results. The analysis results of the experimental data shows that specimen geometry and loading condition did not affect the CCS-COD relation. But the strain energy release rate is a function of not only specimen geometry but also crack extension. Until 25 mm crack extension, the strain energy release rate is a constant minimum value, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for an large size specimen. The fracture criterion remains the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localizing. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-tracking and micro-crack localizing behaviors of concrete.

Analysis on the Actual Conditions of Wastewater Treatment Facilities in Chungcheongnam-do Province Industrial Complexes (충청남도 산업단지의 오·폐수처리실태 분석)

  • Lim, Bong-Su;Kim, Do-Young;Yi, Sang-Jin;Oh, Hye-Jung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.850-862
    • /
    • 2007
  • This study was carried out to survey the actual conditions of wastewater treatment facilities to obtain basic data for the management of wastewater from industrial complexes in Chungcheongnam-do province. Wastewater production flow per site area by watersheds was $49.2m^3/km^2/d$ for Sapgyoho, $8.1m^3/km^2/d$ for Anseongcheon, $5.7m^3/km^2/d$ for Seohae, and $2.9m^3/km^2/d$ for Geumgang. Sapgyoho showed 75% of the total production flow, which was the highest value, Geumgang showed 4% of total flow, which was the lowest value. Average total extra rate as production flow/capacity flow in the wastewater treatment facilities for industrial complex is 49%. Considering by watersheds, the extra rates of Seohae, Geumgang, Anseongcheon, and Sapgyoho, are 73%, 65%, 62%, and 33% respectively. This means that the design of capacity flow in wastewater treatment facilities was too large. Effluent concentration of wastewater treatment facilities did not exceed discharge limit mostly. The removal efficiency rate for water quality item was 90% in BOD, 70% in COD, 80% in SS, 30 to 80% in TN, and 20 to 90% in TP, so the organic removal was good, but the nutrient removal was low and interval of variation was high. The removal efficiency rate of the agricultural was industrial complexes is lower than the national and local complexes. The construction cost of the wastewater treatment facilities in Chungcheongnam-do was $1,756Won\;per\;m^3$, treatment cost was $189Won\;per\;m^3$, and they were about two times and 1.2 times higher than the nation-wide cost, respectively. The treatment cost consists of 39% for man power, 21% for chemical, 16% for power, 11% for sludge treatment, and 13% for others.

A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine (터보과급 디젤기관의 과도운전시 응답성능에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1575-1582
    • /
    • 1992
  • This study describes the response performances of actual engine speed, turbocharger speed, air mass flow rate through engine, boost pressure ratio, exhaust temperature and combustion efficiency for a six-cylinder four-stroke turbocharged diesel engine during the change in operating conditions by using the computer simulation with test bed. In order to obtain the transient conditions, a suddenly large load was applied to the simulation engine with the several kinds of inertia moment in turbocharger and engine, and engine set speed. From the results of this study, the following conclusions were summarized The inferior response performances was mainly caused by turbocharger lag, and air mass flow rate and boost pressure ratio were closely related to the turbocharger speed. A reduced moment of turbocharger inertia resulted in less transient speed drop and much faster recovery to the steady state of the engine. The increase of moment of engine inertia reduced cyclic variation of engine speed. When a large load was applied to the engine at high speed, the engine could be fastly recovered. However, when the same load was applied to the engine at low speed, the engine was stalled.

An Experimental Study on Structural Behaviour of Asymmetric H Beam Slim floor under Load Condition in Fire (내화 피복된 비대칭 H형강을 적용한 슬림플로어 보의 재하가열조건 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Hyung-Jun;Min, Byung-Youl;Lee, Jae-Sung;Park, Soo-Yong
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • When it comes to slim floor using asymmetric H-beam, it was designed that the steel member is embedded in concrete with relatively low thermal conductivity so as to minimize the deterioration of rigidity of steel member in fire. But given the bottom flange of asymmetric H-beam is directly exposed to the fire, the measure of applying the fireproof coating to improve the fire rate performance of slim floor beam was sought. The test was aimed at comparing the fireproof performance by adjusting the load ratio of 0.4 and 0.3, and The test was carried out to identify the 3-hour fire performance by reinforcing the beam as well as applying the fireproof coat, In the wake of comparing the specimen depending on variation of load ratio, lowering load ratio by 0.1 resulted in difference of 12 minutes and deflection was 39 mm. It was able to improve 12 minutes by reinforcing the beam and up to 102.4 mm in deflection.

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

Water Quality Characteristics Evaluation by Flow Conditions Using Load Duration Curve - in Youngbon A Watershed - (부하지속곡선을 이용한 유량 조건별 수질특성 평가 - 영본A 유역을 대상으로 -)

  • Park, Jinhwan;Kim, Kapsoon;Jung, Jaewoon;Hwang, Kyungsup;Moon, Myungjin;Ham, Sangin;Lim, Byungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.319-327
    • /
    • 2013
  • This study was conducted to identify runoff characteristics of pollutants using flow duration curve(FDC) and load duration curve(LDC) in Youngbon A watershed during 2009~2011. A flow rate and pollutant load in the study watershed were estimated by equation of stage-discharge and discharge-loads rating curve. From these methods, BOD, T-N, and T-P have evaluated whether water quality standards would have attained. Results showed that BOD loads of about 50% plotted above the LDC, while T-N and T-P loads of about 50% plotted below the curve. It means that BOD of about 50% have exceeded the water quality criteria, while T-N and T-P of about 50% have complied with the water quality standards. Meanwhile, BOD, TN and T-P loads plotted above the LDC of low flows, implying that they were more affected by point pollution sources than nonpoint pollution sources in the study watershed.

Effects of α2/β Volume Fraction on the Superplastic Deformation (2 상 Ti3Al-xNb 계 금속간 화합물들의 초소성 특성에 미치는 상분율의 영향)

  • 김지식
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.447-456
    • /
    • 2002
  • A study has been made to investigate the boundary sliding and its accommodation mode with respect to the variation of $\alpha$$_2$/$eta$ volume fraction during superplastic deformation of two-phase Ti$_3$Al-xNb intermetallics. Step strain rate and load relaxation tests have been performed at 950, 970 and 99$0^{\circ}C$ to obtain the flow stress curves and to analyze the deformation characteristics by the theory of inelastic deformation. The results show that the grain matrix deformation and boundary sliding of the three intermetallics containing 21, 50 and 77% in $eta$ volume fractions are well described by the plastic deformation and viscous flow equations. Due to the equal accommodation of both $a^2$ and $\beta$ phases, the accommodation modes for fine-grained materials are in good agreement with the iso-strain rate models. The sliding resistance analyzed for the different boundaries is the lowest in the $\alpha$$_2$/$\alpha$$_2$ boundary, and increases in the order of $\alpha$$_2$/$\alpha$$_2$<< $\alpha$$_2$/$\beta$ = $\beta$/$\beta$, which plays an important role in controlling the superplasticity of the alloys with the various $\alpha$$_2$/$\beta$ phase ratio.

Variation of activation functions for accelerating the learning speed of the multilayer neural network (다층 구조 신경회로망의 학습 속도 향상을 위한 활성화 함수의 변화)

  • Lee, Byung-Do;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • In this raper, an enhanced learning method is proposed for improving the learning speed of the error back propagation learning algorithm. In order to cope with the premature saturation phenomenon at the initial learning stage, a variation scheme of active functions is introduced by using higher order functions, which does not need much increase of computation load. It naturally changes the learning rate of inter-connection weights to a large value as the derivative of sigmoid function abnormally decrease to a small value during the learning epoch. Also, we suggest the hybrid learning method incorporated the proposed method with the momentum training algorithm. Computer simulation results show that the proposed learning algorithm outperforms the conventional methods such as momentum and delta-bar-delta algorithms.

  • PDF

Instantaneous Control of a Single-phase PWM Converter Considering the Voltage Ripple Estimate (전압 리플 추정을 고려한 단상 PWM 컨버터의 순시치 제어)

  • 김만기;이우철;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.29-34
    • /
    • 1997
  • In this paper, instantaneous controller of a single-phase PWM converter is realized using DSP. The stable PI gain of the input current and the DC link voltage control system is designed. The DC link voltage control system can be designed in continuous- time domain. But as for the input current control system, the descretizing effect cannot be ignored so it must be designed in descrete-time domain considering the calculation time. The capacitance estimating algorithm which can be acquired through the ripple voltage is proposed. By this algorithm the DC link capacitance can be estimated even under the transient state. Experimental results show the input power factor of 99.1% and the voltage variation rate of $\pm$5% according to the load variation.

  • PDF

Experimental Study on the Viscosity Characteristics of Diluted Engine Oils with Diesel Fuel (경유혼입 디젤엔진오일의 점도특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study was conducted to evaluate the viscosity characteristics of multi-grade engine oils in which contain diesel fuels. Unused engine oils of SAE 5W40, 10W40 and 15W40 were blended with a diesel fuel ratio of 5%, 10%, and 15%. The viscosity of a diluted engine oil was measured with temperature variation ranging from $-20^{\circ}C$ to $120^{\circ}C$ using a rotary viscometer. The diluted engine oil in which is blended to a diesel fuel plays an important role for decreasing an engine oil viscosity, which may decrease the oil film thickness and a load-carrying capacity. Test results show that the viscosity tends to fall for the increased temperature when engine oil is mixed with a diesel fuel. Especially, the viscosity at a low temperature zone is radically decreased compared with a high temperature zone. Based on the experimental results, the empirical equation that can predict the viscosity of diluted engine oil is expressed in the exponential function with the variation of the temperature and a fuel ratio of diluted engine oil. This equation may be possible to predict the limitation of the oil-fuel dilution rate at the concept design stage of the CDPF system, which doesn't affect the influence of the tribological components.