• 제목/요약/키워드: Load support performance

검색결과 320건 처리시간 0.037초

Supporting CORBA Object Group based on Active Replication (능동 복제 기반 CORBA 객체 그룹 지원)

  • Son, Deok-Ju;Sin, Beom-Ju;Nam, Gung-Han;Jin, Seong-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • 제6권11S호
    • /
    • pp.3340-3349
    • /
    • 1999
  • Supporting object group on distributed object system give merits such as load balancing, fault tolerance and high availability. In this paper, we describe a CORBA ORB that has been designed to support object group based on active replication. The ORB supports the operational model in which it uses the IIOP for communication between client and server and total ordered multicast protocol for consistency control among group members. And through extension of ORB, it provides functions required for support of object group. Since it provides transparency of object replication, the ORB is interoperable with the existing CORBA products. It make possible for existing server application to be easily extended to application supporting object group as adding interface functions which should be used for building applications is minimized. A prototype is implemented, and performance of the replicated object group is tested and compared with a single object invocation.

  • PDF

Radar Pulse Clustering using Kernel Density Window (커널 밀도 윈도우를 이용한 레이더 펄스 클러스터링)

  • Lee, Dong-Weon;Han, Jin-Woo;Lee, Won-Don
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.973-974
    • /
    • 2008
  • As radar signal environments become denser and more complex, the capability of high-speed and accurate signal analysis is required for ES(Electronic warfare Support) system to identify individual radar signals at real-time. In this paper, we propose the new novel clustering algorithm of radar pulses to alleviate the load of signal analysis process and support reliable analysis. The proposed algorithm uses KDE(Kernel Density Estimation) and its CDF(Cumulative Distribution Function) to compose clusters considering the distribution characteristics of pulses. Simulation results show the good performance of the proposed clustering algorithm in clustering and classifying the emitters.

  • PDF

A Caching Scheme to Support Session Locality in Hierarchical SIP Networks

  • Choi, KwangHee;Kim, Hyunwoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제18권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Most calls of a called user are invoked by the group of calling users. This call pattern is defined as call locality. Similarly Internet sessions including IP telephony calls have this pattern. We define it session locality. In this paper, we propose a caching scheme to support session locality in hierarchical SIP networks. The proposed scheme can be applied easily by adding only one filed to cache to a data structure of the SIP mobility agent. And this scheme can reduce signaling cost, database access cost and session setup delay to locate a called user. Moreover, it distributes the load on the home registrar to the SIP mobility agents. Our performance evaluation shows the proposed caching scheme outperforms the hierarchical SIP scheme when session to mobility ratio is high.

Analysis of a NEMO enabled PMIPv6 based Mobility Support for an Efficient Information Transmission

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • 제7권4호
    • /
    • pp.197-205
    • /
    • 2018
  • Nowadays, wireless sensor networks (WSNs) have been widely adopted in structural health monitoring (SHM) systems for social overhead capital (SOC) public infrastructures. Structural health information, environmental disturbances and sudden changes of weather conditions, damage detections, and external load quantizing are among the capabilities required of SHM systems. These information requires an efficient transmission with which an efficient mobility management support for wireless networks can provide. This paper deals with the analysis of mobility management schemes in order to address the real-time requirement of data traffic delivery for critical SHM information. The host-based and network-based mobility management protocols have been identified and the advantages of network mobility (NEMO) enabled Proxy Mobile Internet Protocol version 6 (PMIPv6) have been leveraged in order to address the SHM information transmission needs. The scheme allows an efficient information transmission as it improves the handover performance due to shortened handover latency as well as reduced signaling overhead.

A scheme for the call procedure in the HSS breakdown

  • Cho, Sehyun
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.301-302
    • /
    • 2013
  • LTE is the outstanding technology to transfer the data and voice. LTE consists of several nodes to transfer data. In case of the failure in the node of LTE, it could not support the service. So telecommunication-providers set up the back-up system for the simultaneous service-provision. But there is still the problem it comes to the network. Even though there is a back-up system, it would be useless the network is down. We propose the scheme to support the service in the case of this network problem in the LTE network. This scheme reduces 23% load in the LTE network in the case of the HSS node's failure or the network to the HSS nodes.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Resilient Routing Protocol Scheme for 6LoWPAN (6LoWPAN에서 회복력 있는 라우팅 프로토콜 기법)

  • Woo, Yeon Kyung;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권11호
    • /
    • pp.141-149
    • /
    • 2013
  • IETF 6LoWPAN standard technique has been studied in IoT environment to support the IPv6 packet communication. 6LoWPAN protocol for transmission of packets mainly in the AODV routing protocol and a variety of extended techniques have been investigated. In particular, consisting of nodes with limited resources in a network error occurs when the 6LoWPAN reliable data transfer and fast routing method is needed. To this end, in this paper, we propose resilient routing protocol and extension of IETF LOAD algorithm, for optimal recovery path, More specifically, the optimal recovery path setup algorithm, signal flow, and detailed protocols for the verification of the reliability of packet transmission mathematical model is presented. The proposed protocol techniques to analyze the performance of the NS-3 performance through the simulation results that is end-to-end delay, throughput, packet delivery fraction and control packet overhead demonstrated excellence in comparison with existing LOAD.

Performance Predictions of Gas Foil Thrust Bearings with Turbulent Flow (난류 유동을 갖는 가스 포일 스러스트 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.300-309
    • /
    • 2019
  • Gas foil thrust bearings (GFTBs) support axial loads in oil-free, high speed rotating machinery using air or gas as a lubricant. Due to the inherent low viscosity of the lubricant, GFTBs often have super-laminar flows in the film region at operating conditions with high Reynolds numbers. This paper develops a mathematical model of a GFTB with turbulent flows and validates the model predictions against those from the literature. The pressure distribution, film thickness distribution, load carrying capacity, and power loss are predicted for both laminar and turbulent flow models and compared with each other. Predictions for an air lubricant show that the GFTB has high Reynolds numbers at the leading edge where the film thickness is large and relatively low Reynolds numbers at the trailing edge. The predicted load capacity and power loss for the turbulent flow model show little difference from those for the laminar flow model even at the highest speed of 100 krpm, because the Reynolds numbers are smaller than the critical Reynolds number. On the other hand, refrigerant (R-134a) lubricant, which has a higher density than air, had significant differences due to high Reynolds numbers in the film region, in particular, near the leading and outer edges. The predicted load capacity and power loss for the turbulent flow model are 2.1 and 2.3 times larger, respectively, than those for the laminar flow model, thus implying that the turbulent flow greatly affects the performance of the GFTB.

Load Balancing Scheme for Machine Learning Distributed Environment (기계학습 분산 환경을 위한 부하 분산 기법)

  • Kim, Younggwan;Lee, Jusuk;Kim, Ajung;Hong, Jiman
    • Smart Media Journal
    • /
    • 제10권1호
    • /
    • pp.25-31
    • /
    • 2021
  • As the machine learning becomes more common, development of application using machine learning is actively increasing. In addition, research on machine learning platform to support development of application is also increasing. However, despite the increasing of research on machine learning platform, research on suitable load balancing for machine learning platform is insufficient. Therefore, in this paper, we propose a load balancing scheme that can be applied to machine learning distributed environment. The proposed scheme composes distributed servers in a level hash table structure and assigns machine learning task to the server in consideration of the performance of each server. We implemented distributed servers and experimented, and compared the performance with the existing hashing scheme. Compared with the existing hashing scheme, the proposed scheme showed an average 26% speed improvement, and more than 38% reduced the number of waiting tasks to assign to the server.

Radial Performances of Spiral-Grooved Spherical Air Bearings (나선홈을 갖는 반구형 공기 베어링의 반경 방향 성능 측정)

  • Park, Keun-Hyung;Choi, Jeong-Hwan;Choi, Woo-Chon;Kim, Kwon-Hee;Woo, Ki-Myung;Kim, Seung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제16권2호통권95호
    • /
    • pp.23-30
    • /
    • 1999
  • This paper investigates the radial performance of self-acting spiral-grooved air bearing, used to support small high-speed rotating bodies. Repeatable runout, nonrepeatable runout, stiffness and supporting load are selected as the performance. The clearance between rotor and stator, the stator groove depth, and the rotating speed are chosen as three main parameters affecting the performances. Force application and displacement measurement are done in a noncontact manner, in order not to disturb operation: electromagnetic force is applied to the rotor and gap sensors are used to measure the displacement of the rotor. Experimental results show that repeatable runout decreases as speed, groove depth and clearance decrease. Nonrepeatable runout decreases as clearance decreases, and it has a minimum value at $5.5{\mu}m$ of grove depth and a maximum value at speed of 18.000rpm. Stiffness increases as speed increases and clearance decreases, and has a maximum value around $5.5{\mu}m$ of groove depth. The relationship between force and displacement is linear for small displacement, but becomes nonlinear for large displacement. Supporting load is linearly proportional to the stiffness, and it is a maximum value around $4.75{\mu}m$ of clearance.

  • PDF