• Title/Summary/Keyword: Load speed

Search Result 3,514, Processing Time 0.033 seconds

Sensorless Speed Control for Brushless DC Motor using Digital IP Controller (디지털 IP 제어기를 이용한 브러시리스 직류 전동기의 센서리스 속도제어)

  • Kim Jong-Sun;Park Hyong-Joon;Jang Jae-Hoon;Yoo Ji-Yoon;Seo Sam-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.289-293
    • /
    • 2004
  • The sensorless speed control technique for BLDCM using digital IP control is proposed in this paper for advanced speed characteristic which is robust for loads. The sensorless drive of BLDCM using terminal voltages is affected by load or speed because it uses analog filters to estimate the rotor position. For this reason, the robust speed controller with the accurate rotor position estimator is needed for sensorless control which is robust to load and insensitive to motor parameters. The constant speeds robust to load variation and the stable sensorless control of BLDCM robust to the increase or decrease of speed with constant load are implemented using digital IP control in this paper. The validity to these is established with experimentation.

  • PDF

Speed Control of an Overcentered Variable-Displacement Hydraulic Motor on a Constant Pressure Network (일정 압력원에 연결된 가변유압모터의 속도제어)

  • 김철수;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.272-276
    • /
    • 1996
  • This study deals with the speed control of an overcentered variable-displacement hydraulic motor on a constant pressure network, which is noted for its high system efficiency fast dynamic response and energy recovery capability. The speed control characteristics of the conventional cascade PI controller are largely affected by load-torque disturbances. To obtain robust speed control despite torque disturbances, the load torque is estimated by an observer based on a mathematical model and compensated for by a feedforward loop. It is shown by experiment that robust speed control may be obtained with the proposed controller. The experimental data agree fairly well with the theoretical analysis.

  • PDF

Updates of Korean Design Standard (KDS) on the wind load assessment and performance-based wind design

  • Han Sol Lee;Seung Yong Jeong;Thomas H.-K. Kang
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.117-131
    • /
    • 2023
  • Korea Design Standard (KDS) will be updated with two major revisions on the assessment of wind load and performance-based wind design (PBWD). Major changes on the wind load assessment are the wind load factor and basic wind speed. Wind load factor in KDS is reduced from 1.3 to 1, and mean recurrence interval (MRI) for basic wind speed increases from 100 years to 500 years considering the reduction of wind load factor. Additional modification is made including pressure coefficient, torsional moment coefficient and spectrum, and aeroelastic instability. Combined effect of the updates of KDS code on the assessment of wind load is discussed with the case study on the specified sites and building. PBWD is newly added in KDS code to consider the cases with various target performance, vortex-induced vibration, aeroelastic instability, or inelastic behavior. Proposed methods and target performance for PBWD in KDS code are introduced.

A Robust Sensorless speed control of Sensorless BLDC Motor (센서리스 BLDC 전동기의 강인한 속도 제어)

  • Kim, Jong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The sensorless speed control technique for BLDC motor using digital IP control is proposed in this paper for advanced speed characteristic which is robust to motor parameters and load variations. The sensorless drive of BLDC motor using terminal voltages is affected by load or speed because it uses analog filters to estimate the rotor position. For this reason, the robust speed controller with the accurate rotor position estimator is needed for sensorless control which is robust to load and insensitive to motor parameters. The constant speed robust to load variation and the stable sensorless control of BLDC motor robust to the increase or decrease of speed with constant load is implemented using digital IP control in this paper. The validity to these is established with experimentation.

  • PDF

Energy cost of loads carried on the hands, head, or feet (짐나르기의 에너지 소요량)

  • Hwang, Dai-Yun;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.5 no.2
    • /
    • pp.29-40
    • /
    • 1971
  • Oxygen consumption, pulmonary ventilation, heart rate, and breathing frequency were measured on 8 men walking on a treadmill carrying load of 9 kg on hand, back, or head. Besides measurements were made on subjects carrying loads of 2.6 kg each on both feet. The speed of level walking was 4, 5, and 5.5km/hr and a fixed speed off km/hr with grades of 0, 3, 6, and 9%. Comparisons were made between free walking without load and walking with various types of loads. The following results were obtained. 1. In level or uphill walking the changes in oxygen consumption, pulmonary ventilation, breathing frequency and heart rate were smallest in back load walking, and largest in hand load walking. The method of back load was most efficient and hand load was the least efficient. The energy cost in head load walking was smaller than that of in hand load walking. It was assumed that foot load costed more energy than hand load. 2. In level walking the measured parameters increased abruptly at the speed of 5.5 km/hr. Oxygen consumption in a free walking at 4 km/hr was 11.4ml/kg b.wt., and 13.1 ml/kg b.wt. 5.5 km/hr, and in a hand load walking at 4 km/hr was 13.9, and 18.8 ml/kg b. wt. at 5.5 km/hr. 3. In uphill walking oxygen consumption and other parameters increased abruptly at the grade of 6%. Oxygen consumption at 4 km/hr and 0% grade was 11.4 ml/kg b. wt., 13.6 at 6% grade, and 16.21/kg b. wt. at 9% grade in a free walking. In back load walking oxygen consumption at 4km/hr and 0% grade was 12.3 ml/kg b.wt.,14.9 at 6% grade, and 18.7 ml/kg b.wt. In hand load walking the oxygen consumption was the greatest, namely, 13.9 at 0% grade, 17.9 at 6%, and 20.0 ml/kg b. wt. at 9% grade. 4. Both in level and uphill walking the changes in pulmonary ventilation and heart rate paralleled with oxygen consumption. 5. The changes in heart rate and breathing frequency in hand load were characteristic. Both in level and uphill walk breathing frequency increased to 30 per minute when a load was held on hand and showed a small increase as the exercise became severe. In the other method of load carrying the Peak value of breathing frequency was less than 30 Per minute. Heart rate showed 106 beats/minute even at a speed of 4 km/hr when a load was held on hand, whereas, heart rate was between, 53 and 100 beats/minute in the other types of load carriage. 6. Number of strides per minute in level walking increased as the speed increased. At the speed floater than 5 km/hr number of strides per minute of load carrying walk was greater than that of free walking. In uphill walk number of strides per minute decreased as the grade increased. Number of strides in hand load walk was greatest and back load walk showed the same number of strides as the free walk.

  • PDF

Analysis of the Crankshaft Speed Fluctuation in Intra-Cycle (사이클 내 크랭크축 각속도의 변동 해석)

  • 배상수;임인건;김세웅;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.166-172
    • /
    • 1996
  • This paper presents the characteristics of the crankshaft speed fluctuations. To analyze them, the speed waveforms were measured both at the flywheel and at the front end of the engine. The speed waveform measured at the flywheel shows better result than at the front end one, because of the torsional vibration and the auxiliary components. And the patterns of the speed fluctuations are classified into three region, such as low load, middle load and high load region with the variations of the loads. Additionally, as the engine speeds increase and the loads decrease, the analysis of the speed becomes more difficult due to lower variation of the speed. And in all the regions, the main frequency component of the speed fluctuation is firing frequency.

  • PDF

A Study on the Lift-off Characteristics of an Air-lubricated Bump Foil Journal Bearing (공기윤활 범프 저어널 베어링의 부상 특성에 관한 연구)

  • 이남수;이용복;최동훈;김창호
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.236-242
    • /
    • 2001
  • In this paper the effect of bump compliance, load, and the number of pad on the lift-off speed is studied. When the load is greater and bump compliance lower, the shaft is lifted off at higher rotating speed. And when the load is applied near the center of pad, lift-off speed is lower. When the number of pad increases, the lift-off speed is higher. The lift-off characteristics can be used to lengthen the life time of the coating and design the rotating machinery supported by bump bearings.

  • PDF

Load Characteristics of Rotary Operation Using a Cage Wheel in Wet Paddy Fields (케이지 휠을 이용한 습답 로터리 작업의 부하 특성)

  • 오영근;김경욱;박금숙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.229-236
    • /
    • 2001
  • The torque loads acting on the input shaft of the transmission and final driving shaft of the tractor having a cage wheel attached to the driving tries as a traction aid were measured during the rotavating operations in a poorly drained paddy field. Using the measured load data load spectra were constructed. Effects of the design parameters of the cage wheel on the load characteristics were also analyzed. The torque load exerted on the input shaft decreased as the diameter of the cage wheel increased and increased as the rotavator speed increased. The torque load exerted on the final driving shaft increased as the working speed of the tractor increased and decreased as the rotavator speed increased. The torque load on the final driving shaft with the cage wheel were greater than those without the cage wheel.

  • PDF

An Evaluation Study on the Dynamic Stability of High Speed Railway Bridges (고속철도교량의 동적안정성 평가연구)

  • Bang, Myung-Seok;Chung, Guang-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2012
  • In the design of high speed railway bridges is important a impact factor as a tool of assessing the dynamic capacitys of bridges. However, the impact factor(or dynamic amplification factor, DAF) of high speed railway bridges may essentially be changeable because the dynamic response is affected by the long train length(380 m), number of axles and high speed velocity(300 km/h)(Korea Train eXpress: KTX). Therefore, on this study will be examined the dynamic capacity and stability of the typical PSC Box Girder of high speed railway bridge. At first, the static/dynamic analysis is performed considering the axle load line of KTX based upon existing references. Additionally, the KTX moving load is transformed into the dynamic time series load for conducting various parameter studies like axle length, analytical time increment, velocity of KTX. The time history analysis is repeatedly performed to get maximum dynamic responce by varying axle load length, analytical time increment, velocity of KTX. The study shows that dynamic analysis has resonable results with optimal axle load length(0.6 m) and time increment(0.01 sec.) and maximum DAF and dynamic resonance happens at 270 km/h velocity of KTX.

A Study on the Design of a Nonlinear Speed Controller and a Fuzzy Load Torque Observer for a PM Synchronous Motor (영구자석 동기전동기의 비선형 속도 제어기 및 퍼지토크관측기 설계에 대한 연구)

  • Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.282-287
    • /
    • 2010
  • This paper proposes a new nonlinear speed controller with a fuzzy load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). The LMI conditions are derived for the existence of the proposed nonlinear speed controller and fuzzy load torque observer, and the LMI parameterization to obtain the gain matrices of the controller and observer is given. In this paper, to verify the performance of the proposed nonlinear speed controller and fuzzy load torque observer, and the simulation and experimental results are demonstrated under motor parameter and load torque variations.