• Title/Summary/Keyword: Load shedding

Search Result 165, Processing Time 0.032 seconds

Design and Implementation of Multi-Agent System for Load Shedding in Microgrid (마이크로그리드 환경에서 부하차단을 위한 다중 에이전트 시스템의 설계 및 구현)

  • Lim, Yujin;Kim, Hak-Man
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • In an islanded operation mode of a microgrid, load shedding is used to balance between the power supplied and the power demanded. The conventional load-shedding schemes have considered that a load uses a continuous range of values to present its load demand. However, in reality, some loads use integer and discrete values. We design a multi-agent system for the load shedding with consideration of the discrete characteristic of load demands. Besides, we define a control architecture, functionalities of agents, and interactions among agents for implementation of the system. Through experiments in various test scenarios, we show the feasibility and performance of the system.

A Study on the Determination and Application of the Optimum Load Shedding Schemes (최적부하제한방식의 결정과 운용에 관한 연구)

  • Song, Kil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.1
    • /
    • pp.29-37
    • /
    • 1985
  • During Severe emergencies which result in the case of outage of large generator units, an automatic underfrequency protection scheme can prevent the system frequency from decaying and improve the system stability. This paper presents methods and results of a study on the optimum load shedding scheme which covering as follows. 1) Detail representation of governor model 2) Determination of optimum load shedding amount 3) Selection of action time settings of UFR 4) Comparsson of load shedding programs By this study, the optimum system operating method was recommended for reliable operation of power system.

  • PDF

Expert System On Advanced load shedding (개선된 부하차단에 관한 전문가 시스템)

  • Kim, Jae-Chul;Kim, Eung-Sang;You, Mi-Bog
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.354-357
    • /
    • 1991
  • In the case of system operation, a line overload cause damage to spread an whole range of power system. Of the theorems on load shedding, this study applied power distribution theorem and load reduction theorem which are local load shedding method, which are not affected by the magnitude of the power system and need not a large memory capacity and computation time. In this paper, we treat the problem of overload when power system occurred to fatal fault. Especially, there is the special case that local load shedding theorem is not always solved. Therefore, we introduce a solved device of the problem and construct the expert system of expanded local load shedding. Because proposed method uses the merits of expert system, in the case of system operation, the system operator don't embarrass to fatal fault and promptly deals with.

  • PDF

Frequency Analysis on KEPCO Power System Using Dynamic Load Shedding Model (동적부하차단 모델을 이용한 KEPCO 계통의 주파수 해석)

  • Jang, B.T.;Lee, S.Y.;Kim, K.H.;Chu, J.B.;Oh, H.J.;Cho, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.121-122
    • /
    • 2002
  • When a power system experiences a serious disturbance on insufficient power, the system frequency may drop. For system frequency will be maintain standard value, under_frequency relay will reconstruct balance of power and load by load shedding. Currently load shedding scheme is due to establishment plan by fixed scenario. Where compare current scheme with past scheme, system frequency should be recovered by load shedding using rate of frequency decline. This paper suggests the dynamic load shedding scheme by using the rate of change of frequency when The Korea Electric power system is happened the large disturbance.

  • PDF

A Framework for Determining Minimum Load Shedding for Restoring Solvability Using Outage Parameterization

  • Hwachang Song;Lee, Byongjun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.73-78
    • /
    • 2004
  • This paper proposes a framework for determining the minimum load shedding for restoring solvability. The framework includes a continuation power flow (CPF) and an optimal power flow (OPF). The CPF parameterizes a specified outage from a set of multiple contingencies causing unsolvable cases, and it traces the path of solutions with respect to the parameter variation. At the nose point of the path, sensitivity analysis is performed in order to achieve the most effective control location for load shedding. Using the control location information, the OPF for locating the minimum load shedding is executed in order to restore power flow solvability. It is highlighted that the framework systematically determines control locations and the proper amount of load shedding. In a numerical simulation, an illustrative example of the proposed framework is shown by applying it to the New England 39 bus system.

A Design of Load Shedding System Considering both Angular Stability and Voltage Stability in Industrial Power System (산업용 전력계통의 주파수 안정도와 전압 안정도를 고려한 부하차단 설계)

  • Kim, Bong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.103-109
    • /
    • 2004
  • This paper has presented, taking an example of a gas separation plant, dynamic analysis on frequency decline caused by the over-loading at the generator and the knee point causing voltage instability due to reactive power required by re-acceleration of large induction motors, resulting in phenomena of failure in the conventional frequency load shedding. In order to resolve the voltage instability problem, a design of load shedding system employing under-voltage relays has been proposed to the industrial power system containing large induction motors in addition to the conventional load shedding employing frequency relays. For the purpose of dynamic analysis, models of gas turbine and governor, synchronous generator, brushless exciter, and induction motor are introduced.

Load Shedding for Temporal Queries over Data Streams

  • Al-Kateb, Mohammed;Lee, Byung-Suk
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.294-304
    • /
    • 2011
  • Enhancing continuous queries over data streams with temporal functions and predicates enriches the expressive power of those queries. While traditional continuous queries retrieve only the values of attributes, temporal continuous queries retrieve the valid time intervals of those values as well. Correctly evaluating such queries requires the coalescing of adjacent timestamps for value-equivalent tuples prior to evaluating temporal functions and predicates. For many stream applications, the available computing resources may be too limited to produce exact query results. These limitations are commonly addressed through load shedding and produce approximated query results. There have been many load shedding mechanisms proposed so far, but for temporal continuous queries, the presence of coalescing makes theses existing methods unsuitable. In this paper, we propose a new accuracy metric and load shedding algorithm that are suitable for temporal query processing when memory is insufficient. The accuracy metric uses a combination of the Jaccard coefficient to measure the accuracy of attribute values and $\mathcal{PQI}$ interval orders to measure the accuracy of the valid time intervals in the approximate query result. The algorithm employs a greedy strategy combining two objectives reflecting the two accuracy metrics (i.e., value and interval). In the performance study, the proposed greedy algorithm outperforms a conventional random load shedding algorithm by up to an order of magnitude in its achieved accuracy.

Pre-Filtering based Post-Load Shedding Method for Improving Spatial Queries Accuracy in GeoSensor Environment (GeoSensor 환경에서 공간 질의 정확도 향상을 위한 선-필터링을 이용한 후-부하제한 기법)

  • Kim, Ho;Baek, Sung-Ha;Lee, Dong-Wook;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.18-27
    • /
    • 2010
  • In u-GIS environment, GeoSensor environment requires that dynamic data captured from various sensors and static information in terms of features in 2D or 3D are fused together. GeoSensors, the core of this environment, are distributed over a wide area sporadically, and are collected in any size constantly. As a result, storage space could be exceeded because of restricted memory in DSMS. To solve this kind of problems, a lot of related studies are being researched actively. There are typically 3 different methods - Random Load Shedding, Semantic Load Shedding, and Sampling. Random Load Shedding chooses and deletes data in random. Semantic Load Shedding prioritizes data, then deletes it first which has lower priority. Sampling uses statistical operation, computes sampling rate, and sheds load. However, they are not high accuracy because traditional ones do not consider spatial characteristics. In this paper 'Pre-Filtering based Post Load Shedding' are suggested to improve the accuracy of spatial query and to restrict load shedding in DSMS. This method, at first, limits unnecessarily increased loads in stream queue with 'Pre-Filtering'. And then, it processes 'Post-Load Shedding', considering data and spatial status to guarantee the accuracy of result. The suggested method effectively reduces the number of the performance of load shedding, and improves the accuracy of spatial query.

Load Shedding Algorithm Using Linear Programming for Congestion Problems by a Major Contingency

  • Shin Ho-Sung;Song Kyung-Bin
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.371-377
    • /
    • 2005
  • Congestion problems of transmission lines are very important research issues in power system operations. Load curtailment is one of the ways to solve congestion problems by a major contingency. A systematic and effective mechanism for load shedding has been developed by investigating congestion distribution factors and the direct load control program. In this paper, a load shedding algorithm using linear programming for congestion problems by a major contingency is presented. In order to show the effectiveness of the proposed algorithm, it has been tested on the 6-bus sample system and the power system of Korea, and their results are presented.

A study on the optimal load shedding scheme considering the voltage stability improvement (전압안정도 개선을 고려한 적정 부하차단 기법)

  • 이상중;김건중;김원겸;김용배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.3
    • /
    • pp.270-273
    • /
    • 1995
  • This paper proposes an optimal load shedding algorithm by which the system loss can be minimized when the load shedding is unavoidable in case of severe contingency such as the outage of key generators or lines. Shedding load .DELTA.S = .DELTA.P + J.DELTA.Q(MVA) is performed on the weakest bus (on the view of voltage stability), step by step, by the priority of the I.DELTA. = SQRT(.lambda.$\_$P/$\^$2/ + .lambda.$\_$Q/$\^$2/) index given for each load bus, where .lambda.$\_$P/ and .lambda.$\_$Q/ are the sensitivity indices representing the system loss variation versus active and reactive power change of the bus load bus. All loads are assumed to be constant power loads for convenience. A 5 bus sample system proves the effectiveness of the algorithm proposed.