• Title/Summary/Keyword: Load resistance

Search Result 2,423, Processing Time 0.032 seconds

Load & Resistance Factors Calibration for Sliding and Overturning Limit State Design of Perforated Caisson Breakwater (유공케이슨 방파제 활동 및 전도 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Calibration of load-resistance factors for the limit state design of perforated caisson breakwaters are presented. Reliability analysis of 12 breakwaters in nationwide ports was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, some load-resistance factors were proposed by changing target reliability index.

Load & Resistance Factors Calibration for Front Covered Caisson Breakwater (소파블록 피복제 제체의 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn;Huh, Jungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • Calibration of load-resistance factors for the limit state design of front covered caisson breakwaters were presented. Reliability analysis of the breakwaters which are constructed in Korean coast was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, load-resistance factors were compared with foreign country's code for verification.

Evaluation on elastic-plastic fracture resistance curve of SA508C-3 and aluminum alloy steels by load-ratio method (Load-ratio 법에 의한 SA508C-3와 알루미늄 합금의 탄소성 파괴저항 곡선평가)

  • Yoon, H. K.
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 1996
  • A method is proposed to evaluate the elastic-plastic fracture resistance curve only with load displacement records without the crack length measurement in CT specimen. This method is based on the idea that the effect of plastic deformation and the crack growth can be measured only by using a load-displacement record. If we know the reference-load curve representing the hardening of specimen, then the crack extension can be calculated by the elastic compliance determined from the load ratio. The results of this proposed method were compared to those of the elastic-plastic fracture resistance curve for the ASTM standard unloading compliance method. The experimental results for two kinds of ductile materials showed that the proposed method well simulates the material J-R curves. This method is currently applied for CT specimens. but it can be extended to the other specimen geometries.

  • PDF

An Experimental Study on the Fire Resistance effect on load ratio and compressive strength of the CFT Column under loading in fire (CFT 기둥의 축력비 및 압축강도 변화에 따른 화재거동 영향인자에 관한 실험적 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu;Park, Kyung-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.371-376
    • /
    • 2010
  • The strength of steel material in a concrete filled steel tube (CFT) is reduced in fire, but the filled interior concrete structurally ensures the fire resistance due to its high thermal capacity. More, the contractibility of CFT is excellent since it can be constructed without form work. This research analyzed the interior concrete strength and deformation characteristics, which are the influence factors of the fire resistance of CFT, in proportion to the axial load ratio. The fire resistance performance according to changes of the axial load ratio showed great fluctuation. As $280{\times}280{\times}6$ CFT columns with the concrete strengths of 24 MPa and 40 MPa and the axial load ratios of 0.9, 0.6, and 0.2 in accordance with KS F 2257-1 and 7 were heated with loading to examine the fire resistance performance, the 24 MPa concrete exhibited the fire resistance time as 27, 113, and 180 minutes for the axial load ratios, 0.9, 0.6, and 0.2 respectively. In case of 40 MPa concrete, the fire resistance time were turned out to be 19 and 28 minutes for the axial load ratios, 0.9 and 0.6 respectively. The results of 40 MPa concrete showed the much lower fire resistance performance when comparing with those of 24 MPa concrete. The fire resistance performance was not increased significantly when the axial load ratio was reduced. Therefore, the deceased fire resistance performance of high strength concrete is assumed to be caused by the internal pressure increase upon the heat application.

  • PDF

A Study on the Fire Resistance Performance of Reinforced Concrete Columns according to Axial Load Ratio (축력비 조건에 따른 철근콘크리트기둥의 내화성능에 관한 연구)

  • Hwang, Kyu-Jae;Cho, Bum-Yean;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.26-31
    • /
    • 2013
  • This study, to evaluate the technology of the fire resistance design of Reinforced Concrete columns based on fire resistance performance design, was suppose to use as basic data for performance design through a measure of temperature and deformation using heat transfer analysis and Heat-load test of the Reinforced Concrete columns as parameter is the axial load ratio. In accordance with axial load without eccentricity, the load ratio of 0.30, 0.35, 0.40 and 0.47 were imposed on columns. As a result of this study, 0.40 or more of axial load ratio can be ensured that the fire resistance performance was considered satisfactory.

Experiment of Lateral Load Resistance of Dori-Directional Frame in Traditional Wood Structure System (전통목구조 시스템의 도리방향 골조의 횡저항 성능에 대한 실험)

  • Lee, Young-Wook;Hong, Sung-Gul;Kim, Nam-Hee;Jung, Sung-Jin;Hwang, Jong-Kook;Bae, Boung-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.241-246
    • /
    • 2007
  • The capacity of a lateral load resistance of a joint with Jangbu-connection of Dori-directional frame in traditional wood structure system was studied, through experiments of 1/2 scaled and T-shaped 7 subassemblies of joint of Dori-directional frame for Deawoongjeon of Bongjungsa. From the experiment, it was shown that the capacity of a lateral load resistance was influenced by the vertical load confining joint and not influenced by the number of Chok and the depth of Changbang, And lateral load resistance mechanism is developed by the restraint between the vertical load and the contacting edge of column; if structure is pushed to the left, the top-right end of Pyeongju contacts with Changbang and left Changbang loses the contacts with Pyeongju and therefore only right Changbang can resist to lateral load.

  • PDF

Effects of Stud Spacing, Sheathing Material and Aspect-ratio on Racking Resistance of Shear Walls

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.97-103
    • /
    • 2002
  • This study was carried out to obtain basic information on racking resistance of shear walls and the factors affecting racking resistance of shear walls. Shear walls constructed by larch lumber nominal 50 mm × 100 mm framing and various sheathing materials were tested by applying monotonic and cyclic load functions. Shear walls with various stud spacing such as 305 mm, 406 mm, and 610 mm were tested under both of monotonic and cyclic loads and shear walls with various aspect (height-width) ratios were tested under cyclic load functions. The effect of hold-down connectors in shear walls was also tested under cyclic load functions. Racking resistance of shear walls has very close linear relation with stud spacing and width of shear walls. The ultimate racking strength of shear walls was reached at around or before the displacement of 20 mm. It was proposed in this study that the minimum racking strength and minimum width for shear wall be 500 kgf and 900 mm, respectively. Load-displacement curves obtained by racking tests under monotonic load functions can be represented by three straight line segments. Under cyclic load functions, envelope curves can be divided into three sections that can be represented by straight lines and the third section showed almost constant or decreasing slope.

Local Resistance Factor Update of Driven Steel Pipe Piles Using Proof Pile Load Test Results (검증용 정재하시험을 이용한 타입강관말뚝의 저항계수 보정)

  • Park, Jae Hyun;Kim, Dongwook;Chung, Choong Ki;Kim, Sung Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.259-266
    • /
    • 2011
  • Conducting statistical analysis of foundation resistance using sufficient number of well-performed load test results is prerequisite for the calibration of reliable resistance factors for foundation LRFD. In this study, a rational analysis method is proposed so that the proof pile load test results can be reflected in update of resistance statistical characteristics based on Bayesian theory. Then, resistance factors for driven steel pipe piles compatible with Korea foundation practices are updated by implementing this rational analysis method. To accomplish the resistance factor updates, (1) prior pile resistance distribution is constructed based on the results of pile load tests, which loads are imposed at least up to their ultimate limit loads. (2) likelihood function is obtained from the results of proof pile load tests, and (3) posterior pile resistance distribution is updated by combining these prior pile resistance distribution and likelihood function. The resistance factors are updated using the posterior pile resistance following the first-order reliability method (FORM). From the possible results of five consecutive proof pile load tests, the updated resistance factors vary within ranges of 0.27-0.96 and 0.19-0.68 for target reliability indices of 2.33 and 3.0, respectively. Consequently, it was found that the Bayesian theory-implemented method enables the updates of resistance factors in an efficient way when reliable resistance factors are not available due to the lack of well-performed pile load test results.

Electrical Characteristics of Disk-type Piezoelectric Transformer Poled with the Same Direction (동일 방향으로 분극된 디스크형 압전변압기의 전기적 특성)

  • 이종필;홍진웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.688-692
    • /
    • 2003
  • For high voltage operation, a new type of piezoelectric transformer using radial vibration of disk, poled with the same direction was proposed. The piezoelectric ceramics was composed to PZT-PMN-PSN. The diameter and thickness of a disk type piezoelectric transformer were 45[mm]and 4[mm], respectively The surface ratio of driving electrode and generating electrode of the piezoelectric transformer was 2 : 1. The resonance characteristics of input admittance, step-up voltage ratio and power transmission efficiency of the piezoelectric transformer were measured by varying the load resistance(0.1∼70[kΩ]). As a result, both resonance frequency and step-up voltage ratio increased with increasing load resistance. The step-up voltage ratio was reached more than 60 times under no load resistance. The maximum efficiency of 97% at load resistance of 2kΩ was obtained.

Study on Fire Resistance of H-Section Beams Filled with Concrete at Web (웨브 보강 형태에 따른 H형강 보부재의 내화성능에 관한 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.76-84
    • /
    • 2011
  • Steel beams are one of primary member and those carries the horizontal load and floor load to axial member. To avoid structural failure when the steel beams are exposed to fire, fire resistance performance requires. Till now, the evaluation for fire resistance of the beam was conducted using the maximum load and standard fire curve defined in the KS F 2257. But recently the constructional patterns are changing toward multi-function performance to get a better structural performance and fire resistance as well. In this paper to get the databases for fire resistance, limiting temperatures of the beam, load-bearing fire tests according to load ratios, two grades of compressive concrete strengths were applied.