• Title/Summary/Keyword: Load reduction

Search Result 2,345, Processing Time 0.025 seconds

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구)

  • Lee, Seung-Hoon;Park, Young-Ho;Song, Myung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • Piled raft foundations have been highlighted as an economical design concept of pile foundations in recent years. However, piled raft foundations have not been widely used in Korea due to the difficulty in estimating the complex interaction effects among rafts, piles and soils. The authors developed an effective numerical program to analyze the behavior of piled raft foundations for practical design purposes and presented it briefly in this paper. The developed numerical program simulates the raft as a flexible plate consisting of finite elements with eight nodes and the raft is supported by a series of elastic springs representing subsoils and piles. This study imported another model to simulate pile groups considering non-linear behavior and interaction effects. The apparent stiffnesses of the soils and piles were estimated by iterative calculations to satisfy the compatibility between those two components and the behavior of piled raft foundations can be predicted using these stiffnesses. For the verification of the program, the analysis results about some example problems were compared with those of rigorous three dimensional finite element analysis and other approximate analysis methods. It was found that the program can analyze non-linear behaviors and interaction effects efficiently in multi-layered soils and has sufficient capabilities for application to practical analysis and design of piled raft foundations.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Development of Screw-Type Handy Earth Auger for an Improved Digging Efficiency(I) - Design and Manufacture - (토양굴취력이 향상된 스크류형 경량 식혈기 개발(I) - 설계 및 제작 -)

  • Kim, Jin Hyun;Lee, Jae Hyun;Kim, Ki Dong;Ko, Chi Woong;Kim, Dong Geun
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.31-41
    • /
    • 2016
  • This study was conducted to develop a handy earth auger for use in sloppy and rugged forest terrains in order to reduce labor cost which comprises a major part of the production costs in forest afforestation projects. The first prototype is developed consist of two parts, the soil-digging screw and the battery power source. The specifications of the first prototype screw are: length of 170mm, a top diameter of 60mm, bottom diameter of 47mm, 23° angle for each helix, and a 50mm awl-head tip. The use of a single line of screw was selected for reduced weight. In addition, a power source of rotary DC Motor(WD-6G2425, WONILL, Korea) with a maximum torque of 30kgf-cm, rotation of 20-30rpm, K6G30C decelerator with a reduction ratio of 30:1 which could be used with no load for 48 was operated. In consideration of its weight, a lithium battery was utilized in line with the goal of developing a lightweight auger. In order to evaluate the performance of the first prototype, test sites were selected as 6 areas. The rotational force was found to be highest in area A(Solid area), followed by areas F(Mounted slope 40° area) and E(Mounted slope 30° area). It was also observed that in general, the rotational force increased along with the increase in soil depth with the maximum rotational force recorded at 10cm.

Earth pressures acting on vertical circular shafts considering arching effects in c-$\phi$ soils : II. Lab. Model Tests (c-$\phi$ 지반에서의 아칭현상을 고려한 원형수직터널 토압 : II. 실내 모형실험)

  • Kim, Do-Hoon;Cha, Min-Hyuck;Lee, Dea-Su;Kim, Kyung-Ryeol;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.129-144
    • /
    • 2010
  • The earth pressure acting on the vertical shaft is less than that acting on the retaining wall due to three dimensional arching effect. Thus, it might be essential to estimate the earth pressure actually acting on the shaft when designing the vertical shaft. In this paper, large-sized model tests were conducted as Part II of companion papers to verify the newly suggested earth pressure equation proposed by Kim et al. (2009: Part I of companion papers) that can be used when designing the vertical shaft in cohesionless soils as well as in c-$\phi$ soils and multi-layered soils. The newly developed model test apparatus was designed to be able to simulate staged shaft excavation. Model tests were performed by varying the radius of vertical shaft in dry soil. Moreover, tests on c-$\phi$ soils and on multi-layered soils were also performed; in order to induce apparent cohesion to the cohesionless soil, we add some water to the dry soil to make the soil partially-saturated before depositing by raining method. Experimental results showed a load transfer from excavated ground to non-excavated zone below dredging level due to arching effect when simulating staged excavation. It was also found that measured earth pressure was far smaller than estimated if excavation is done at once; the final earth pressure measured after performing staged excavation was larger and matched with that estimated from the newly proposed equation. Measured results in c-$\phi$ soils and in multi-layered soils showed reduction in earth pressures due to apparent cohesion effect and showed good matches with analytical results.

Asphalt Concrete Pavement Response to Moving Load and Viscoelastic Property (아스팔트 혼합물의 점탄성과 차량의 이동 속도가 포장 거동에 미치는 영향)

  • Jo, Myoung-hwan;Kim, Nakseok;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.485-492
    • /
    • 2008
  • This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. A series of field tests have been conducted on three pavement sections (A2, A5, and A8) at the Korea Expressway Corporation (KEC) test road. The effect of vehicle speed on the responses of each test section was investigated at three speeds: 25 km/hr, 50 km/hr, and 80 km/hr. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of finite element (FE) analyses. A commercial FE package, ABAQUS was used to model each test section and a step loading approximation has been adopted to simulate the effect a moving vehicle. For viscoelastic analysis, relaxation moduli of asphalt mixtures were obtained from laboratory test. Field responses reveals the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains) and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

A Study on Conservation Management Systems based on Deterioration Diagnosis of the Fossil Site: Tracksite of Dinosaurs and Pterosaurs in Sanbuk-dong, Gunsan, Korea (화석지 손상도 정밀진단 기반 보존관리체계 연구: 군산 산북동 공룡발자국과 익룡발자국 화석산지)

  • Hye Ri Yang;Gyu Hye Lee;Chan Hee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.675-695
    • /
    • 2023
  • The tracksite of dinosaurs and pterosaurs in Sanbuk-dong of Gunsan is the largest early Cretaceous dinosaur footprint fossil site in Korea, and all the footprints are important evidence indicating that large ornithopod and theropod dinosaurs inhabited the Korean peninsula during the early Cretaceous. The Sanbuk-dong site was covered with waterproof sheet in an outdoor environment until the installation of a protective enclosure in 2021. As a result, various factors such as shear force, load reduction, temperature and humidity fluctuations, acid rain, salinity and microorganisms have complexly interacted in the substrate of fossils, exacerbating the damage to footprints. For 159 footprints in 12 trackways among the footprints found in the site, the damage types were classified in detail and the level of each damage was assessed. The damages were classified into 6 types through the classification of deterioration degree of individual footprints. As a result of ultrasonic physical property evaluation on the surface of the fossil site, most of these footprints are in the completely weathered (CW) stage. Furthermore, various weathering patterns were observed in the study area, and surface contaminants were analyzed along the stratigraphy. Although the patterns of freshness and contaminants varied at different points within the fossil site, the chemical compositions were similar. Based on the results, an efficient conservation management system for dinosaur footprint fossils was established, and a conservation treatment type for each footprint was proposed.

Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions (현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가)

  • Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.709-719
    • /
    • 2023
  • In general, most of the electrical equipment responsible for control within power plants is housed in self-standing cabinets. These cabinets are typically fixed to a slab using post-installed anchors. Although the fixation method of using post-installed anchors provides stability, there is a risk of conductor failure due to external forces, including moments. However, the performance assessment of current anchors is only evaluated through uniaxial material tests. Therefore, the primary purpose of this study is to compare the static performance of post-installed anchors, considering on-site installation conditions, with their performance in material tests and to analyze the behavioral characteristics of the anchors. While conducting experiments using actual cabinets would be ideal, practical and spatial constraints make this approach difficult. As an alternative, experiments were conducted using a test specimen consisting of a steel column and a support. As a result, the pull-out performance of anchors reflecting on-site installation conditions was measured to be about 10% higher than that observed in material tests. The trends in load reduction and the point of maximum performance for the anchors also differed. To verify the reliability of the experimental study, a 3D FEM analysis was performed, which will provide predictive information on the loads transferred to the post-installed anchors for structural performance evaluations of electrical cabinets using shaking table test in the future.

Evaluation of Structural Performance of 3D Printed Composite Rudder according to Internal Topology Shape (내부 위상 형상에 따른 3D 프린트 복합재 방향타의 구조 성능 평가)

  • Young-Jae Cho;Hyoung-Seock Seo;Hui-Seung Park
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.454-460
    • /
    • 2023
  • Recently, regulations on greenhouse gas emissions have been strengthened, and the International Maritime Organization (IMO) has been strengthening greenhouse gas regulations with a goal of net 'zero' emissions by 2050. In addition, in the shipbuilding/offshore sector, it is important to reduce operating costs, such as improving propulsion efficiency and lightening structures. In this regard, research is currently being conducted on topology optimization using 3D printed composite materials to satisfy structural lightness and high rigidity. In this study, three topology shapes (hexagonal, square, and triangular) were applied to the interior of a rudder, a ship structure, using 3D printed composite materials. Structural analysis was performed to determine the appropriate shape for the rudder. CFD analysis was performed at 10° intervals from 0° to 30° for each rudder angle under the condition of 8 knots, and the load conditions were set based on the CFD analysis results. As a result of the structural analysis considering the internal topology shape of the rudder, it was confirmed that the triangular, square, and hexagonal topology shapes have excellent performance. The rudder with a square topology shape weighs 78.5% of the rudder with a triangular shape, and the square topology shape is considered to superior in terms of weight reduction.