• Title/Summary/Keyword: Load power factor

Search Result 847, Processing Time 0.026 seconds

Contingency Ranking Using A Line Outage Distribution Factor (선로사고분배계수를 이용한 상정사고 선택)

  • Park, K.H.;Yoo, H.J.;Chung, J.K.;Kang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.760-763
    • /
    • 1996
  • This paper presents an algorithm for the contingency ranking in a power system. The method utilizes line outage distribution factors(LODF) which are established from DC load flow solutions. The LODF are formulated using changes in network power generations to simulate the outaged line from the network. To abtain better ranking. one can take a line loading of 60% over into account in the computation of PI. The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

Improvement of transient characteristics of SEPIC rectifier (SEPIC을 이용한 고역율 정류회로의 과도응답특성 개선)

  • Joung Seok-Eon;Lee Kyo-Beum;Hyun Dong-Seok;Song Joong-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.525-529
    • /
    • 2001
  • A pulse frequency control(PFM) method for single-phase SEPIC-type rectifier is described in this paper. In the SEPIC rectifier, a relationship between the output power and the respective switching frequency is investigated to establish the control scheme of PFM. The propsed control method is provided with a feed-forward control loop of the output load as well as a feed-back control loop of the output voltage. The simulation results show good dynamic responses and unity power-factor operation.

  • PDF

Analyze of High Efficiency PCS for Fuel Cell (연료전지용 3-Stage PCS의 손실 해석)

  • Ba, Yasgalan;Lee, Yong-Jin;Han, Dong-Hwa;Kim, Young-Sik;Gwon, Wang-Song;Jeong, Beong-Hwang;Shin, Woo-Sok;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.100-102
    • /
    • 2008
  • As Utility interactive fuel cell systems are widely used, it is required for each power conditioning system(PCS) to have higher generating performance and more stable connecting characteristics. This study is focused to minimization of power losses and hence higher efficiency related to the new half bridge type 3-stage utility interactive PCS topology. The loss factor of half-bridge converter becomes only 1.2[%] under the rated load, and hence total efficiency is maintained to be higher as 91[%].

  • PDF

A STUDY ON PARALLEL OPERATION OF TWO 3-PHASE PWM CONVERTERS (3상 PWM 컨버터의 병렬운전에 관한 연구)

  • Min, B.G.;Ryu, S.P.;Baek, B.S.;Shin, H.J.;Kim, Y.P.;Kim, D.U.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.156-158
    • /
    • 1998
  • This paper presents parallel operation of two 3-phase PWM converters whose Power and control schemes can be directly applied to a large capacity system. This paper describes power circuit, dc voltage regulation, input power factor correction and balancing load control of two converters. Switching device Is IGBT and CPU of control is 32-bit floating point DSP for real time instantaneous control. Simulations and experimental results for 20kw model conform the validity of proposed schemes.

  • PDF

The torsional buckling analysis for cylindrical shell with material non-homogeneity in thickness direction under impulsive loading

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.231-236
    • /
    • 2005
  • This study considers the buckling of orthotropic cylindrical thin shells with material nonhomogeneity in the thickness direction, under torsion, which is a power function of time. The dynamic stability and compatibility equations are obtained first. Applying Galerkin's method then applying Ritz type variational method to these equations and taking the large values of loading parameters into consideration, analytic solutions are obtained for critical parameter values. Using those results, the effects of the periodic and power variations of Young's moduli and density, ratio of Young's moduli variations, loading parameters variations and the power of time in the torsional load expression variations are studied via pertinent computations. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

Novel Single-inductor Multistring-independent Dimming LED Driver with Switched-capacitor Control Technique

  • Liang, Guozhuang;Tian, Hanlei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Current imbalance is the main factor affecting the lifespan of light-emitting diode (LED) lighting systems and is generally solved by active or passive approaches. Given many new lighting applications, independent control is particularly important in achieving different levels of luminance. Existing passive and active approaches have their own limitations in current sharing and independent control, which bring new challenges to the design of LED drivers. In this work, a multichannel resonant converter based on switched-capacitor control (SCC) is proposed for solving this challenge. In the resonant network of the upper and lower half-bridges, SCC is used instead of fixed capacitance. Then, the individual current of the LED array is obtained through regulation of the effective capacitance of the SCC under a fixed switching frequency. In this manner, the complexity of the control unit of the circuit and the precision of the multichannel outputs are further improved. Finally, the superior performance of the proposed LED driver is verified by simulations and a 4-channel experimental prototype with a rated output power of 20 W.

A Study on Influence of Synchronous Rectification Switch on Efficiency in Totem Pole Bridgeless PFC (토템폴 브리지리스 PFC에서 동기정류 스위치의 효율 영향에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.108-113
    • /
    • 2021
  • In this paper, a totem pole PFC was structured in two methods with FET and diode for low-speed switch while GaN FET was used for high-speed switch. Internal power loss, power conversion efficiency and steady-state characteristics of the two methods were compared in the totem pole bridgeless PFC circuit which is widely applied in large-capacity and high-efficiency switching rectifier of 500W or more. In order to compare and confirm the steady-state characteristics under equal conditions, a 2kW class totem pole bridgeless PFC was constructed and the experimental results were analyzed. From the experimental results, it was confirmed that the low-speed switch operation has a large difference in efficiency due to the internal conduction loss of the low-speed switch at a low input voltage. Especially, input power factor and load characteristic showed no difference regardless of the low-speed switch operation.

A Study on the Protection System on the Electric Railways (전철급전회로 보호시스템에 관한 연구)

  • Chang, Sang-Hoon;Lee, Chang-Moo;Han, Moon-Seob;Oh, Kwang-Hae;Shin, Han-Soon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1166-1169
    • /
    • 1998
  • The Load characteristic of electric railway requires the power demand of the high capacity which amplitude is spacial-temporally fluctuated due to frequent starting and stopping with large tractive force. The conventional electric railway mainly consists of the resistance controlled and the thyristor controlled locomotives, are compensated for their bad characteristics of the power factor$(70\sim80%)$ with installation of another capacitor improving power factor at the substation. Since 1994, VVVF train car with good characteristics of power factor(100%) have been introduced and operated in Kwa-Chon Line. From the present technical tendency, it is judged that introduction of the locomotive with various controlled methods is necessary. The protective equipments installed at the substation are complicated and various aspects to detect faults and reduce their extension, so the universal countermeasures are required. Specially in the case of the fault occurrence it is difficult to calculate the fault location because of the change in the contactline constant according to modifying the characteristics of the contactline (the dualized catenary wire and extension, etc), so much time is required for the detection of fault location. In BT-fed method distance-relays and fault-locators are not installed, we have so many difficulties in the quick accident recovery.

  • PDF

A Study on the Reliability Assessment Considering Interruption Cost of Load Characteristics in Distribution Systems (배전계통에서 정전부하 특성비용을 고려한 신뢰도평가 방안에 관한 연구)

  • Rho, Dae-Seok;Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.899-904
    • /
    • 2008
  • This paper deals with the analytical approach for the reliability assessment in radially operated distribution systems. The approach can estimate the expected reliability performance of distribution systems by a direct assessment of the configuration of the systems using the reliability indexes such as NDP(Non-Delivery Power) and NDE(Non-Delivery Energy). The indexes can consider the number and configuration of the load. but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, this paper presents the new indexes considering the expected interruption cost for the load section and shows the effectiveness by simulating at the model systems.

A Simulation based Study on the Economical Operating Strategies for a Residential Fuel Cell System (시뮬레이션 기반 가정용 연료전지 시스템의 경제적 운전전략에 관한 연구)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.104-115
    • /
    • 2009
  • In case of residential fuel cell system, it is significant to stably supply heat and power to a house with high efficiency and low cost for the successful commercialization. In this paper, the control strategy analysis has been performed to minimize the total cost including capital and operating cost of the residential fuel cell system. The proposed analysis methodology is based on the simulator including the efficiency models as well as the cost data for fuel cell components. The load control strategy is the key factor to decide the system efficiency and thus the cost analysis is performed when the fuel cell system is operated for several different load control logics. Additionally, annual efficiency of the system based on the seasonal load data is calculated since system efficiency is changeable according to the electric and heat demand change. As a result, the hybrid load control combined electricity oriented control and heat oriented control has the most economical operation.