• Title/Summary/Keyword: Load motion

Search Result 1,076, Processing Time 0.032 seconds

A study on robust multivariable control of stewart platform type motion simulator (스튜어트 플랫폼 방식 운동재현기의 다변수 견실제어에 관한 연구)

  • 정규홍;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.736-741
    • /
    • 1992
  • The Stewart platform is one example of a motion simulator which generates 6 DOF motion in space by 6 actuators connected in parallel. The present SISO controllers are designed to track displacement command of each actuator computed from reference 6 DOF motion of platform by Stewart platform inverse kinematics. But this type of control can't cope with external load variation, geometric configuration of motion simulator, and different dynamic behavior of 6 DOF motion. In this paper, a multivariable controller using H- optimal control theory is designed for linerized simulator model with each actuator driving force as control input and platform 6 DOF motion as measured output. Nonlinear simulation result of the H$_{\infty}$ MIMO controller is not satisfied in steady-state characteristics. But the proposed H$_{\infty}$ + PI control scheme shows acceptable performance.e.e.

  • PDF

Direction-Oriented Fast Full Search Algorithm at the Divided Search Range (세분화된 탐색 범위에서의 방향 지향적 전영역 고속 탐색 알고리즘)

  • Lim, Dong-Young;Park, Sang-Jun;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.3
    • /
    • pp.278-288
    • /
    • 2007
  • We propose the fast full search algorithm that reduces the computational load of the block matching algorithm which is used for a motion estimation in the video coding. Since the conventional spiral search method starts searching at the center of the search window and then moves search point to estimate the motion vector pixel by pixel, it is good for the slow motion picture. However we proposed the efficient motion estimation method which is good for the fast and slow motion picture. Firstly, when finding the initial threshold value, we use the expanded predictor that can approximately calculate minimum threshold value. The proposed algorithm estimates the motion in the new search order after partitioning the search window and adapt the directional search order in the re-divided search window. At the result, we can check that the proposed algorithm reduces the computational load 94% in average compared to the conventional spiral full search algorithm without any loss of image quality.

The Effects of Lower Limb Training Using Sliding Rehabilitation Machine on the Foot Motion and Stability in Stroke Patients

  • Lee, Kwan-Sub;Kim, Kyoung;Lee, Na-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the effect of lower limb training using a sliding rehabilitation machine on the foot motion and stability in stroke patients. Methods: Thirty participants were allocated to two groups: Training group (n=15) and Control group (n=15). Subjects in the control group received physical therapy for 30 minutes, five times per week, and those in the training group received lower limb training using a sliding rehabilitation machine for 30 minutes, five times per week, with physical therapy for 30 minutes, five times per week, during a period of six weeks. Heel rotation, hallux stiffness, foot balance, metatarsal load, toe out angle, and subtalar joint flexibility were measured by RS-scan. Results: Significant improvement of the foot motion (hallux stiffness, meta load) and the foot stability (toe out angle, subtalar joint flexibility) was observed in the training group. Conclusion: This study demonstrated that lower limb training using a sliding rehabilitation machine is an effective intervention to improve the foot motion and stability.

ECAM Control System Based on Auto-tuning PID Velocity Controller with Disturbance Observer and Velocity Compensator

  • Tran, Quang-Vinh;Kim, Won-Ho;Shin, Jin-Ho;Baek, Woon-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • This paper proposed an ECAM (Electronic cam) control system which has simple and general structure. The proposed cam controller adopted the linear and polynomial curve-fitting method to generates a smooth cam profile curve function. Smooth motion trajectory of master actuator guarantees the good performance of slave motion and has an important effect on the interpolation quality of ECAM. The auto-tuning PID velocity controller was applied to overcome the uncertainties in ECAM, and the gains of the controller are updated continuously to ensure the consistency of system performance under varying working conditions. The robustness of system against the varying load torque disturbances and noises is guaranteed by using the load torque disturbance observer to suppress the disturbance on master actuator. The velocity compensator was applied to compensate the degradation of performance of slave motion caused from the varying driving speed of master motion. The stability and validity of the proposed ECAM control system was verified by simulation results.

Simulation of Motion Accuracy Considering Loads in Linear Motion Units (부하를 고려한 직선운동유니트의 정밀도 시뮬레이션 기술)

  • Khim, Gyungho;Park, Chun Hong;Oh, Jeong Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.405-413
    • /
    • 2015
  • This paper presents the motion accuracy simulation considering loads such as workpiece weight, cutting force, cogging force of a linear motor, and force caused by misalignment and runout error of a ballscrew in linear motion units. The transfer function method is basically utilized to estimate 5-DOF motion errors, together with the equilibrium equations of force and moment on the table. The transfer function method is modified in order to consider clearance changed according to the loads in the double sided hydrostatic/aerostatic bearings. Then, the analytic model for predicting the 5-DOF motion errors is proposed with the modified transfer function method. Motion errors were simulated under different loading conditions in the linear motion units using hydrostatic, aerostatic, and linear motion bearings, respectively. And the proposed analytic model was verified by comparing the estimated and measured motion errors.

A multivariable controller design of 6 DOF motion simulator (6자유도 운동재현기의 다변수 제어기 설계)

  • 이호영;강지윤;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • The Stewart Platform is one example of a motion simulator which generater 6DOF motion in space by six actuators in parallel. The presented control methrol of 6DOF motion simulator is generally classified into two types, one is SISO and the other is MIMO control type. The SISO control can't compensate for external load variation and different dynamic behavior of 6DOF motion, trerefore this type don's control motion precisely. On the other hand, the MIMO control compensates for a interference of 6DOF motion because MIMO controller is designed with 6DOF motion simulator synamics. But MIMO control of motion simulator has a complexity of 6DOF displacement feedback, because in oder to obtain feedback value we must solve the forward kinematics using measurement of cylinder length or design a state estimator, unless measurement of 6DOF displacement is possible. In this paper, a multivariable controller using H .inf. optimal control theory is designed to consider a interference of 6DOF motion and to obtain robust,precise control of system. Also in order to solve the mentioned problem of MIMO control, this paper presents a modified MIMO control model which control 6DOF motion by using feedback of measurement od cylinder length.

  • PDF

A Study on Artificial Wheel Load Generation Method Using PSD Analysis (PSD 함수를 이용한 인공윤하중의 생성기법에 대한 연구)

  • Cho, Kwang-Il;Choi, Moon-Seock;Lim, Ji-Young;Kim, Sang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.184-189
    • /
    • 2008
  • In this study, an artificial wheel load generation method is proposed to assist practical engineers performing dynamic analysis with simple procedure. To generate an artificial wheel loads from running vehicle, PSD(Power Spectrum Density) profiles of actual wheel load were sampled in terms of various road roughnesses. A detailed truck and bridge models were used for sampling actual wheel load to represent the real motion of moving vehicle. These wheel load profiles were simplified for the artificial wheel load. The simplification of actual wheel load profiles was performed by regression analysis. The result showed that the artificial wheel load well represents the real profiles of wheel load.

  • PDF

On the Optimal Distribution of Structural Stiffness in Beam-type Buildings (보형태 빌딩구조물의 최적 강성 분배에 관하여)

  • 최동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.314-321
    • /
    • 1998
  • This paper presents motion based design methodology for structures. Current design methodologies are primarily strength-based. Such methods are adequate when strength is expected to govern the design. But as the slenderness of structures increases, motion such as displacement and acceleration becomes the dominant criterion. In this paper, a preliminary design approach for beam-type buildings, where motion dominates the design, is discussed by effectively distributing the magnitude of structural stiffness to control the distribution of displacement under service load. This analytic development is illustrated using a cantilever beam as the structure under static loads, free vibration, and forced vibration.

  • PDF

The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids (내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식)

  • 서영태
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF