• Title/Summary/Keyword: Load model

Search Result 7,690, Processing Time 0.037 seconds

Continuous Conditional Random Field Model for Predicting the Electrical Load of a Combined Cycle Power Plant

  • Ahn, Gilseung;Hur, Sun
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2016
  • Existing power plants may consume significant amounts of fuel and require high operating costs, partly because of poor electrical power output estimates. This paper suggests a continuous conditional random field (C-CRF) model to predict more precisely the full-load electrical power output of a base load operated combined cycle power plant. We introduce three feature functions to model association potential and one feature function to model interaction potential. Together, these functions compose the C-CRF model, and the model is transformed into a multivariate Gaussian distribution with which the operation parameters can be modeled more efficiently. The performance of our model in estimating power output was evaluated by means of a real dataset and our model outperformed existing methods. Moreover, our model can be used to estimate confidence intervals of the predicted output and calculate several probabilities.

Estimating the Pollution Delivery Coefficient with Consideration of Characteristics Watershed Form and Pollution Load Washoff (유역형상과 오염부하배출 특성을 고려한 유달계수 산정)

  • Ha, Sung-Ryong;Park, Jung-Ha;Bae, Myung-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.79-87
    • /
    • 2007
  • The performance of a stream water quality analysis model depends upon many factors attributed to the geological characteristics of a watershed as well as the distribution behaviors of pollutant itself on a surface of watershed. Because the model run has to import the pollution load from the watershed as a boundary condition along an interface between a stream water body and a watershed, it has been used to introduce a pollution delivery coefficient to behalf of the boundary condition of load importation. Although a nonlinear regression model (NRM) was developed to cope with the limitation of a conventional empirical way, this an up-to-date study has also a limitation that it can't be applied where the pollution load washed off (assumed at a source) is less than that delivered (observed) in a stream. The objective of this study is to identify what causes the limitation of NRM and to suggest how we can purify the process to evaluate a pollution delivery coefficient using many field observed cases. As a major result, it was found what causes the pollution load delivered to becomes bigger than that assumed at the source. In addition, the pollution load discharged to a stream water body from a specific watershed was calculated more accurately.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

Finite Element Analysis for Fastening Process of Snap Ring (스냅링 체결 공정 해석)

  • Ryu, Il-Hun;Lim, Young-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.187-192
    • /
    • 2009
  • A snap ring is a kind of metal spring with open ends which can be installed into a groove to prevent lateral movement. In this study a nonlinear finite element analysis model is developed to simulate the fastening process of a snap ring connecting the constant velocity joint and the transmission. Insert load, disengage load and breakage are three important issues. They are analyzed using the developed model. The load histories of simulations are similar to those of tests and the differences of maximum load are around 10%. Bending of the entire ring and unfolding of the end section are major contributors of the fastening load. The load variations caused by the angular position of spline tooth are about 50%. Breakage is highly sensitive to the position of a snap ring.

Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks (풍화암에 근입된 현장타설 말뚝의 하중 전이 특성)

  • Jeong, Sang-Seom;Cho, Sung-Han;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.85-106
    • /
    • 2000
  • The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was on quantifying the load transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Prediction of Drawing Load in the Shape Drawing Process (이형인발공정 하중예측에 관한 연구)

  • Lee, T.K.;Lee, C.J.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

A New Load Aggregation Method in Consideration of Non-linear Load (비선형 부하를 고려한 새로운 부하합성 기법)

  • Lee, Jong-Pil;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.168-173
    • /
    • 2012
  • The aggregation of group loads, which consists of the linear and the non-linear systems, yields the error involved in the reactive power aggregation, which is greater than the active power aggregation in the component based load modeling. Each individual reactive power in a group load affects the aggregated load different from composition rate. This paper proposes a new method that determines the degree of impacts by adjusting the coefficient of weight factors of each load using the least squares error method. The effectiveness of proposed algorithm is demonstrated by simulating three aggregation cases.

Component-Based Load Modeling Updated by Hybrid Technique (하이브리드 방식에 의한 미시적 부하모델링)

  • 지평식
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • Component-based method for load model not only should include the performances of the load components, but also should take into consideration the core losses of transformers, the line losses and the capacitor banks. Especially, capacitor bank affects the accuracy of reactive load model in load modeling. But it is difficult to identify actual reactive powers of capacitor banks in power system for load modeling. This research improves the component-based modeling method including uncertain capacitor bank. The proposed method is hybrid technique, which adds the measurement-based method to the existing component-based method for reliable information of capacitor band. The results of case studies were presented to verify the validity of the proposed method.

A FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT ACCORDING TO ISTHMUS WIDTH OF GOLD INLAY CAVITY (금인레이 와동의 폭경에 따른 응력분포와 변위에 관한 유한요소법적 연구)

  • Shin, Gang-Suk;Cho, Young-Gon;Hwang, Ho-Keel
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.395-411
    • /
    • 1993
  • The purpose of this study was to examine the clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, the cavities were prepared on maxillary first premolar and filled with gold inaly. A two - dimensional model was composed of 1037 - node triangle elements. In this model, isthmus was varied in width at 1/4, 1/3 and 1/2 of intercuspal width and material properties were given for four element groups, i.e., enamel, dentin, pulp and gold. The 500N occlusal load varied in direction and it was examined using three types of load : concentrated load, divided load and distributed load. The models were also examined with empty cavities using the devided load and distributed load. These models were analyzed the displacement and strees distribution by the two - dimensional Finite Element Method. The results were as follows : 1. All experimental models which filled with gold inlay after cavity preparation were similar direction of displacement with control model under same load type. But in the models with empty cavities, as isthmus width was wider, the degree of displacement was increased at same load type. 2. Among the experimental models which were filled with gold inaly after cavity preparation, the model II showed the least stress concentration under concentrated load and divided load. But in the models with empty cavities, the model III showed the largest stress concentration and tooth fracture is expected regardless isthmus width. 3. All experimental models showed similar displacement pattern beneath restorative material under a concentrated load. In the models with empty cavities, a divided load resulted in a lingual displacement of the lingual cusp, but a distributed load resulted in a buccal displacement of the lingual cusp. In regard to the above results, the restored models were stronger than empty models in respect to the bending moment and tensile stress. The empty models are expected to fracture regardless isthmus width. The safest isthmus width was 1/3 of intercuspal distance, which showed the least stress concentration in respect to the effect of stress distribution.

  • PDF

An Analytical Study on the Change of System Supports according to the Brace Installation (가새 설치 여부에 따른 시스템 동바리 거동변화에 대한 해석적 연구)

  • Oh, Byoung-Han;Choi, Byong J.
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.104-111
    • /
    • 2018
  • System supports are widely used in concrete construction due to the convenience and structural safety at the point of both installation and dismantling. However, there were frequent collapses in the construction sites due to the absence of both structural review and brace installations. Therefore, this paper examines the importance of braces in the system supports. In order to examine the importance of the brace, four types of braces were considered: 100% braces, 50% braces, 25% braces, and without braces. The maximum displacement of the 100% braced model was 0.97 mm, the 50% braced model was 1.13 mm, the 25% braced model was 1.16 mm and the non-braced model was 24.3 mm, respectively. Compared to the model with the without-braces, the model with 100% of the braces installed has a displacement of 4.0%, the model with 50% of the braces showed a displacement of 4.7%, and the model with 25% of the braces appeared to be a displacement of 4.8%. That is, the installation of the braces is effective in reducing the maximum displacement of the system supports and is effective in reducing the maximum displacement with only small number of braces installed.