• Title/Summary/Keyword: Load frequency control

Search Result 790, Processing Time 0.034 seconds

An Automatic Diagnosis for Rotor Bar Faults using Park's vector Pattern (팍스벡터 패턴을 이용한 회전자 바 고장 자동 진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.361-363
    • /
    • 2007
  • In this paper, an auto-diagnosis method of rotor bar fault for small induction motor is suggested. Usually FFT of stator currents are given the good results, but to detect the fault, slip is needed for calculating the feature frequency. The slip is varied as the load is changed. So in this paper, some alternative method for estimating the load is suggested. This method is based on the Park's vector pattern. The magnitudes of the feature frequency are compared with the threshhold that is predefined in the bounded range of load. The healthy rotor, single rotor bar fault and double rotor bar fault are tested with no load, 25%, 50%, 75%, and 100% rated load. From 50% to 100% rated load case, the rotor bar faults are detectable using indirect estimation of the load and the comparing the magnitudes of feature frequency. The no load case and under 40% rated load case, rotor fault are un detectable.

  • PDF

Improvement in Power System Frequency Control by Automatic Follow-up Regulator of Thermal Power Plant (화력발전소 부하조절기 자동추동장치에 의한 계통주파수 개선에 관한 연구)

  • 권욱현;황재호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.10-17
    • /
    • 1991
  • An improved control method in turbine control system is proposed. By automatic follow-up design, power system frequency may be maintained within prespecified range. Base or half load control is possible by distributing power plant load allotment. Otherwise, diminutive frequency-load control is dine by governor-free operation in power plant. This paper proposes governor-free operation which is automatically followed by load-limitter setter. The condition which limits governor action may be somewhat improved within boiler condition by this idea. This design has been implemented at Samchunpo thermal power plant. The improved practical results are shown.

  • PDF

Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems (전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

The Control of load Commutated Current Source Inverter for Induction Motor Drive (유도전동기(誘導電動機) 구동(驅動)을 위한 부하전류식(負荷轉流式) 전류형(電流型) 인버터의 제어(制御))

  • Chung, Y.T.;Sim, J.M.;Lee, S.Y.;Soh, Y.C.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.255-257
    • /
    • 1994
  • The V/F slip frequency constant control methods are used for driving induction motor with load commutated current source inverter, that is. constant V/F and slip frequency driving is used to load commutate the inverter below the critical frequency, while constant voltage and variable frequency and slip frequency driving are used in above the critical region. In order to applicate the load commutated current source inverter to the general use, speed control range of induction noter is selected to two times at rated frequency. Therefore, economical application is possible because of the maximum reduction of the condenser of the inverter output port. The use of the proposed force commutated circuit improves the false operation of force commutated circuit and inverter commutation failure which are produced by the influence of the lower-order harmonics of the conventional load commutated current source inverter at starting.

  • PDF

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

Decentralized Load-Frequency Control of Interconnected Power Systems with SMES Units and Governor Dead Band using Multi-Objective Evolutionary Algorithm

  • Ganapathy, S.;Velusami, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • This paper deals with the design of decentralized controller for load-frequency control of interconnected power systems with superconducting magnetic energy storage units and Governor Dead Band Nonlinearity using Multi-Objective Evolutionary Algorithm. The superconducting magnetic energy storage unit exhibits favourable damping effects by suppressing the frequency oscillations as well as stabilizing the inter-area oscillations effectively. The proposed control strategy is mainly based on a compromise between Integral Squared Error and Maximum Stability Margin criteria. Analysis on a two-area interconnected thermal power system reveals that the proposed controller improves the dynamic performance of the system and guarantees good closed-loop stability even in the presence of nonlinearities and with parameter changes.

A Study of Optimal Design of the Proportional Load-Frequency Controller for a Self-service Power Station (주파수제어를 위한 비열제어기구의 최적설계에 관한 연구)

  • 장세훈;임화영
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.99-103
    • /
    • 1977
  • The object of this work is to study an optimal design problem of the proportional load-frequency controller for the single-control area power system. The selfservice power station is still a popular means as a power supplying source on ships or in a certain manufacturing area. The power system of this kind can be formulated as a single control-area system and it attracts a certain academic interest in controlling the system frequency under disturbances. In this paper, the single control-area system is mathematically formulated as a linear, time-invariant system in state-space under certain assumptions. The optimal proportional control law and the realization of the controller in closed loop-version is studied so that the final system designed can attain the system frequency to the nominal stationing value after the small load-disturbance. As in general cases of optimal design problems, the performance index is assumed to be quadratic in states and the control effort, and the infinite time control process is assumed in this work. The final control system realized depicts certain improvements in case study; in stability, transient responses and in steady-state frequency deviation, even though the steady state error did not attain the zero value.

  • PDF

The development of frequency relaying algorithm considering a transient stability (과도 안정도를 고려한 주파수 계전 알고리즘 개발)

  • Lee, B.H.;Kim, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.282-283
    • /
    • 2006
  • A frequency relaying algorithm which is used system separation and load shedding to improve transient stability is proposed. The algorithm can trip the generator and shed load in the abnormal frequency condition. The computer simulations of load flow analysis is used to determine the amount of load to be shed in an under frequency condition. Furthermore dynamic brake energization in the simulation is performed for the control of overfrequency.

  • PDF