• Title/Summary/Keyword: Load frequency Control

Search Result 795, Processing Time 0.024 seconds

Position Estimation of Switched Reluctance Motors Using Binary Observer (이원 관측기를 이용한 스위치드 릴럭턴스 모터의 위치 추정)

  • Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.11b
    • /
    • pp.95-97
    • /
    • 2008
  • The binary observer estimates the rotor position and rotor flux with alleviation of the high-frequency chattering, and retains the benefits achieved in the conventional sliding observer, such as robustness to parameter and disturbance variations. The position sensorless control of SRM under the load and inductance variation is verified by the experimental results.

  • PDF

Series Capacitor Compensated Resonant High Frequency Inverter with ZCS-Pulse Density Modulation fey Induction Heating Fixing Roller in Copy Machine

  • Ahmed T.;Shirai H.;Gamage L.;Soshin K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.499-502
    • /
    • 2003
  • This paper presents the voltage source type half bridge lossless auxiliary inductor snubber assisted series capacitor compensated resonant high frequency inverter for induction heated fixing roller in copy machines. This high-frequency inverter treated here can completely achieve zero current soft switching (ZCS) commutation for wide power regulation range under its constant frequency pulse density modulation (PDM) scheme. Its transient and steady-state operating principle is originally presented fur a constant frequency PDM control strategy under a ZCS operation commutation, together with its output effective power regulation characteristics-based on the PDM strategy. The experimental operating performances of this ZCS-PDM high frequency inverter using IGBTs are illustrated as compared with computer simulation ones. Its power losses and actual efficiency are evaluated and discussed on the basis of simulation and experimental results.

  • PDF

Three-Phase 4-Wire Isolated Wind Energy Conversion System Employing VSC with a T-Connected Transformer for Neutral Current Compensation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF con-troller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a T-connected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller.

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

Dual Mode Buck Converter Capable of Changing Modes (모드 전환 제어 가능한 듀얼 모드 벅 변환기)

  • Jo, Yong-min;Lee, Tae-Heon;Kim, Jong-Goo;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.40-47
    • /
    • 2016
  • In this paper, a dual mode buck converter with an ability to change mode is proposed, which is suitable particularly for portable device. The problem of conventional mode control circuit is affected by load variation condition such as suddenly or slowly. To resolve this problem, the mode control was designed with slow clock method. Also, when change from the PFM(Pulse Frequency Modulation) mode to the PWM(Pulse Width Modulation) mode, to use the counter to detect a high load. And the user can select mode transition point in load range from 20mA to 90mA by 3 bit digital signal. The circuits are implemented by using BCDMOS 0.18um 2-polt 3-metal process. Measurement environment are input voltage 3.7V, output voltage 1.2V and load current range from 10uA to 500mA. And measurement result show that the peak efficiency is 86% and ripple voltage is less 32mV.

Position Control for AC Servo Motor Using a Sliding Mode Control (슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구)

  • 홍정표;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • The dynamic model of ac servo motor is influenced very much due to rotor resistance change and nonlinear characteristic. By using the sliding mode control the dynamic behavior of system can be made insensitive to plant parameter change and external disturbance. This paper describes the application of the sliding mode control for position control of ac servo motor. The control scheme is derived and designed. A design method based on external load parameters has been developed for the robust control of ac induction servo drive. The proposed control scheme are given based on the variable structure controller and slip frequency vector control. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft initial J, viscous friction B and torque disturbance.

  • PDF

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

A VECTOR CONTROLLER DESIGN WITH DIRCT MRAC FOR SPEED CONTROL OF INDUCTION MOTOR (직접 적응제어 방식을 이용한 유도전동기의 벡타제어)

  • Lim, K.Y.;Jang, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.737-741
    • /
    • 1987
  • The induction motor is represented by nonlinear equations whose parameters are changing with respect to the slip-frequency, temperature, etc. The slip-frequency is effected by unknown load which is difficult to estimate on-line. Astable vector controller is designed with direct MRAC to improve the quality of the transient response. The unknown load is considered in this speed controller design, and tested by simulation. Also a flux controller is designed and tested to reduce the audible noise in this paper.

  • PDF

Performance Analysis of a Multi-type Inverter Heat Pump (멀티형 인버터 열펌프의 냉방성능해석에 관한 연구)

  • Kim, Y. C.;Park, G. W.;Youn, Y.;Min, M. K.;Choi, Y, D,
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.153-159
    • /
    • 2001
  • A system simulation program was developed for a multi-type inverter heat pump. Electronic expansion valve(EEV) was used to extend the capacity modulating range of the heat pump as expansion device. The program was also developed to calculate actual system performance with the building load variation with climate during a year. The performance variation of a multi-type hat pump with two EEV and an inverter compressor was simulated with compressor speed, capacity, and flow area of the EEV. As a result, the optimum operating frequency of the compressor and openings of the expansion device were decided at a given load. As compressor speed increased, he capacity of heat pump increased, the capacity of heat pump increased. Therefore flow area of EEV should be adjusted to have wide openness. Thus the coefficient of performance(COP) of the heat pump decreased due to increasement of compressor power input. The maximum COP point at a given load was decided according to the compressor speed. And under the given specific compressor speed and the load, the optimum openings point of EEV was also decided. Although the total load of indoor units was constant, the operating frequency increased as the fraction of load in a room increased. Finally ad the compressor power input increased, the coefficient of performance decreased.

  • PDF

A Design of Fuzzy Power System Stabilizer using Adaptive Evolutionary Computation (적응진화연산을 이용한 퍼지-전력계통안정화장치 설계)

  • Hwang, Gi-Hyun;Park, June-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.704-711
    • /
    • 1999
  • This paper presents a design of fuzzy power system stabilizer (FPSS) using adaptive evolutionary computation (AEC). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations. FPSS shows better control performances than conventional power system stabilizer (CPSS) in three-phase fault with heavy load which is used when tuning FPSS. To show the robustness of the proposed FPSS, it is appliedto damp the low frequency oscillations caused by disturbances such as three-phase fault with normal and light load, the angle deviation of generator with normal and light load and the angle deviation of generator with heavy load. Proposed FPSS shows better robustness than CPSS.

  • PDF