• Title/Summary/Keyword: Load flow calculation

Search Result 156, Processing Time 0.031 seconds

Calculation of Total Maximum Daily Load using Instreamflow Requirement (하천유지유량을 이용한 일최대 오염허용부하량 산정 방안)

  • Chung, Eun-Sung;Kim, Kyung-Tae;Kim, Sang-Ug;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.317-327
    • /
    • 2008
  • This study developed the methodology to calculate the total daily maximum load (TMDL) using the instreamflow requirement because the previous TMDLs were too simple to easily achieve. Instreamflow requirement which was the average low flow ($Q_{275}$) in the previous planning cannot consider the seasonal variation of streamflow. Therefore, this study used the instreamflow requirement which is a maximum value among hydrologic drought flow ($Q_{355}$), and environmental flows for ecology and scenery. The environmental flows for ecology were calculated using Physical HABitat SIMulation system (PHABSIM) which can estimate the necessary flow for fish survival by life cycle. Using the proposed method, all monthly TMDLs of streams in the Anyangcheon were calculated for the application.

An Evaluation of Large Scale Distribution system Unbalance (3상 조류계산에 의한 대규모 배전계통의 불평형상태 평가)

  • 송현선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.86-93
    • /
    • 1999
  • It is necessary to calculate the system's factor for reasonable operation and security enhancerrent of large scale distribution system This paper presents an effective three phase load flow calculation for distribution system unbalance evaluation. It takes into account an untranspoed transmission line, the core loss as a functioo of voltage on the serondary side of the transformer, and a generator unbalance mxle1 which is also suitable for a salient pole machine. The load flow algorithm is used Newton-RaiDson method of load flow equations in bus phase voltage.oltage.

  • PDF

A Study for Evaluating of Voltage Stability Margin Considering Shunt Capacitor (조상설비를 고려한 전압안정성 여유전력의 평가에 관한 연구)

  • 김세영
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 1998
  • This paper presents a fast calculation method for evaluating of voltage stability margin (MW) using the line flow equation in polar form. Here, Line flow equations $(P_{ij},\;Q_{ij}$ are comprised of state variable, $V_i,\;{\Delta}_i,\;V_j$ and ${Delta}_j$, and line parameter, r and x. using the feature of polar coordinate, these becomes one equation with two variables, $V_j,;V_j$. Moreover, if bus j is slack or generator bus, which is specified voltage magnitude in load flow calculation, it becomes one equation with one variable $V_ i $ that is, may be formulated with the second-order equation for $V^2_i$. Therefore, multiple load flow solutions may be obtained with simple computation. The obtained load flow multiple solutions are used for evaluating of voltage stability through sensitivity analysis or its closeness. Also, the method is proposed to calculate for voltage stability margin considering shunt capacitor, which is important element for evaluating of voltage stability. The proposed method was validated to sample systems.

  • PDF

Substation Bus Voltage Angle Calculation Method Using Voltage Angle Difference Measured at the Tie Switch in the Distribution Line (배전선로 상시연계점 측정 전압 위상차를 이용한 변전소 모선 위상각 추정 방법)

  • Son, Ju-Hwan;Lim, Seong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • Distribution networks are operated in radial fashion during the normal state. Loop configuration is also required temporally in case of live load transfer among the adjacent feeders. Voltage angles of each substation buses are very important data in order to calculate power flow of the loop structured distribution feeders. This paper proposes substation bus voltage angle calculation method using voltage angle difference measured at the normally open tie switches. Simulation case studies using Matlab simulink have been performed to establish feasibility of proposed method.

Design of an Electromagnetic Pump and Numerical Analysis of the Liquid Metal Flow (전자기펌프의 설계 및 액체금속 유동의 수치해석)

  • Kwon, Jeong-Tae;Kim, Seo-Hyun;Nahm, Taek-Hoon;Lim, Hyo-Jae;Kim, Chang-Eob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2589-2595
    • /
    • 2009
  • An electromagnetic pump has been designed using Load Distribution Method and Equivalent Circuit Method, and installed in a liquid metal flow system. The relation between the driving power of he electromagnetic pump and the flow rate was proposed. Also, the flow velocity and flow rate has been calculated by treating the Lorentz force as a source term in the Navier-Stokes equation. The calculation results were analyzed and compared with data from a commercial Code, FLUENT. They agreed well with each other within an error of 5%.

Calculation of Pollutant Loadings from Stream Watershed Using Digital Elevation Model and Pollutant Load Unit Factors (발생부하원단위와 수치표고모형을 이용한 하천유역 오염부하량 산정)

  • Yang, Hong-Mo;Kim, Hyuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • The purpose of this study is to compare calculated pollutant loadings using pollutant load unit factors and vector type coverage, and expected mean concentration(EMC) and raster type of digital elevation model(DEM). This study is also focusing on comparison of the advantages and the disadvantages of the two methods, and seeking for a method of calculation of pollutant loadings using DEM. Estimation of pollutant inputs using pollutant load unit factors has limitations in identifying seasonal variations of pollutant loadings. Seasonal changes of runoffs should be considered in the calculation of pollutant loadings from catchments into reservoirs. Evaluation of pollutant inputs using runoff-coefficient and EMC can overcome these drawbacks. Proper EMC and runoff-coefficient values for the Koeup stream catchments of the Koheung estuarine lake were drawn from review of related papers. Arc/Info was employed to establish database of spatial and attribute data of point and non-point pollutant sources and characteristics of the catchments. ArcView was used to calculate point and non-point pollutant loadings. Pollutant loads estimated with either unit factors-coverages, i.e., pollutant load unit factors and vector coverages f point sources and land use, or EMC and digital elevation mode(DEM) were compared with stream monitoring loads. We have found that some differences were shown between monitoring results and estimated loads by Unit Factors-Coverage and EMC-DEM. Monthly variations of pollutant loads evaluated with EMC-DEM were similar to those with monitoring result. The method using EMC-DEM can calculate accumulated flows and pollutant loads and can be utilized to identify stream networks. A future research on correcting the difference between vector type stream using flow direction grid and digitalizing vector type should be conducted in order to obtain more exact calculation of pollutant loadings.

  • PDF

A Study the load Forecasting Techniques using load Composition Rates (Residential load) (부하구성비를 이용한 부하예측에 관한 연구 - 주거용 부하를 중심으로 한)

  • Park, Jun-Yioul;Lim, Jae-Yun;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.82-85
    • /
    • 1993
  • The load forecasting has been essential in planning and operation of power systems. The load composition rata is also needed to analyze power-systems - load flow calculation and system stability. This paper proposes the monthly peak load forecasting methods for load groups in residential class using load composition rate and electric consumption characteristics. The proposed methods were applied to a real-scale power system and the effectiveness was turned out.

  • PDF

On-Line Calculation of the Critical Point of Voltage Collapse Based on Multiple Load Flow Solutions (다중조류계산을 이용한 전압붕괴 임계점의 On-Line 계산)

  • Nam, Hae-Kon;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.134-136
    • /
    • 1993
  • This paper presents a novel and efficient method to calculate the critical point of voltage collapse. Conjugate gradient and modified Newton-Raphson methods are employed to calculate two pairs of multiple load flow solutions for two operating conditions, i.e., both +mode and -mode voltages for two loading conditions respectively. Then these four voltage magnitude-load data sets of the bus which is most susceptible to voltage collapse, are fitted to third order polynomial using Lagrangian interpolation in order to represent approximate nose curve (P-V curve). This nose curve locates first estimate of the critical point of voltage collapse. The procedure described above is repeated near the critical point and the new estimate will be very close to the critical point. The proposed method is tested for the eleven bus Klos-Kerner system, with good accuracy and fast computation time.

  • PDF

Investigation on the Flow Field Upstream of a Centrifugal Pump Impeller

  • Zhang, Yao;Luo, Xianwu;Yi, Yunchi;Zhuang, Baotang;Xu, Hongyuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.209-216
    • /
    • 2011
  • The flow upstream of a centrifugal pump impeller has been investigated by both experimental test and numerical simulation. For experimental study, the flow field at four sections in the pump suction is measured by using PIV method. For calculation, the three dimensional turbulent flow for the full flow passage of the pump is simulated based on RANS equations combined with RNG k-$\varepsilon$ turbulence model. From those results, it is noted that at both design lo ad and quarter load condition, the pre-swirl flow whose direction is the same as the impeller rotation exists at all four sections in suction pipe of the pump, and at each section, the pre-swirl velocity becomes obviously larger at higher rotational speed. It is also indicated that at quarter load condition, the low pressure region at suction surface of the vane is large because of the unfavorable flow upstream of the pump impeller.

Derivation of Distributed Generation Impact Factor in a Networked System in Case of Simultaneous Outputs of Multiple Generation Sites

  • Lim, Jung-Uk;Runolfsson, Thordur
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.78-83
    • /
    • 2006
  • A new measure, the distributed generation impact factor (DGIF), is used for evaluating the impact of newly introduced distributed generators on a networked distribution or a transmission system. Distribution systems are normally operated in a radial structure. But the introduction of distributed generation needs load flow calculation to analyze the networked system. In the developed framework, the potential share of every generation bus in each line flow of a networked system can be directly evaluated. The developed index does not require the solution of power flow equations to evaluate the effect of the distributed generation. The main advantage of the developed method lies in its capability of considering simultaneous outputs of multiple generation sites.