• 제목/요약/키워드: Load flow

검색결과 2,382건 처리시간 0.024초

국내 전력계통 안정화를 위한 다단계 부하차단 제어전략 수립에 관한 연구 (A Study on Multi Level Load Shedding Control Scheme Strategy for Stabilization of the Korean Power System)

  • 이윤환
    • 전기학회논문지P
    • /
    • 제65권4호
    • /
    • pp.255-261
    • /
    • 2016
  • Korean Power System are operating a load shedding system to prevent voltage instability phenomenon caused by severe line contingencies. In order to apply the load shedding scheme should be selected a location, amount, delay time. Current load shedding system is load shedding amount that has been calculated in the steady-state analysis to load shed the total amount in first level, load shedding amount calculated in advance, it is possible to perform an unnecessary load shedding. In this paper, set a multi-level load shedding control strategy step-by-step selection of load shedding amount for the prevention of excessive load shedding. In addition, through a voltage resilience analysis of the power system by applying motor load ratio and sensitivity parameter to selection the multi level load shedding ratio and delay time. For this reason, to take advantage of the limit data of interchange power, by utilizing interface power flow data to set a multi-level load shedding control strategy for the stabilization of the Korean Power System.

남향과 동향 집합주택의 냉방부하에 관한 연구 (A Study on the Cooling Load of South and East Facing Apartment Houses)

  • 박근우;이경희
    • 한국주거학회논문집
    • /
    • 제11권2호
    • /
    • pp.129-137
    • /
    • 2000
  • This study is about the difference of South and East facing Cooling load of Apartment s Houses using Dynamic Heat-flow Calculation. Therefore, the purpose of this study is come in to use Material for the Thermal Environments of Apartment Houses. The results of the analysis are below. (1) For the peak load of degree hour; The highest is "I" unit and the next high load is H, F, E, C, B, G, D and A unit for the south facing Apartment houses. The higher load is "H" unit and the next high load is I, E, F, B, C, G, D, A Unit for the east facing Apartment houses. (2) For the total load of degree day; The highest load is "I" unit and the next high load is H, G, F, E, C, B, D and A Unit for the south facing Apartment houses. The highest load is "H" unit and the next high load is I, G, E, F, B, C, D, A Unit for the east facing Apartment houses. (3) For the total load of degree day; The highest load is "H" Unit for the east facing Apartment houses and the Lowest load is "A" Unit for the south facing Apartment houses.is "A" Unit for the south facing Apartment houses.nt houses.

  • PDF

착과량 수준 및 생육성기 토양수분 함량 변화에 따른 '후지'/M.9 품종의 수액이동 특성 (Xylem Sap Flow Affected by Short-term Variation of Soil Moisture Regimes at Higher Growth Period in 'Fuji'/M.9 Apple Trees with Different Fruit Loads)

  • 박정관;김승희;이인복;박진면
    • 한국환경농학회지
    • /
    • 제25권2호
    • /
    • pp.164-169
    • /
    • 2006
  • 착과량을 달리한 '후지'/M.9 품종에서 생육 최성기중 토양수분 변화에 따른 수액 이동 특성과 수체 생리반응을 조사하였다. 적정 착과는 적습 조건인 -50 kPa에서 VPD 및 최대증발산량과 비슷한 양상의 수액이동량을 보였으나 과다 착과는 -50 kPa 및 -80 kPa 조건에서 최대증발산량보다 낮은 수액흡수량을 보였다. 적정 착과는 모든 토양수분 조건에서 최대증발산량보다 일중 $1.06{\sim}3.93L$ 많은 수액이 이동되는 특성을 보였고 과다 착과는 적정 착과보다 토양수분 -50 kPa 조건에서 21%, -20 kPa과 -80 kPa에서 $31{\sim}36%$ 정도 낮은 수액 이동량을 보였다. 착과 처리에 따른 신초생육과 엽면적은 적정 착과 처리구가 다른 처리구보다 유의성 있게 높았으나 과다 착과 처리구는 가장 낮았다. 적정 착과 처리구의 엽수분포텐셜은 다른 처리구에 비해 모든 토양수분 조건에서 가장 낮아서 수분소모율이 가장 높았다. 따라서 '후지'/M.9 품종은 적정 착과량 유지와 더불어 생육성기 중 적습조건을 유지하는 것이 수액이동을 고려할 경우, 증산효율을 높이는데 바람직할 것으로 판단되었다.

냉각수 공급방식 및 국부적인 물통로의 형상 변화에 따른 냉각수 유동특성 및 연소실 벽면의 냉각효과 (Coolant Flow Characteristics and Cooling Effects in the Cylinder Head with Coolant Flow System and Local Water Passage)

  • 위신환;민영대;이종태
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.32-41
    • /
    • 2003
  • For the countermeasure of expected higher thermal load in miller cycle engine, coolant flows in the cylinder head of base engine with several coolant flow methods and drilled hole passages were measured by using PIV technique. And the cooling effect was evaluated by measurements of wall temperatures according to each coolant flow method. It was found that the series flow system was most suitable among the discussed 3 types of coolant flow methods since it had the best cooling effect in cylinder head by the fastest coolant flow velocity It was also found that for drilled water passage to decrease the large thermal load in exhaust valve bridge, nozzle type is more effective compared with round type of water passage, and its size has to be determined according to the coolant flow pattern and velocity in each cylinder.

마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘 (Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid)

  • 문대성;서재진;김윤성;원동준
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.

하수관거 정비지역의 관거이송 유량 및 수질특성 변화 (Changes in Characteristics of Sewer Flow & Its Water Quality from the Sewer Rehabilitation Area)

  • 박준대;오승영;최윤호;김용석
    • 한국물환경학회지
    • /
    • 제31권2호
    • /
    • pp.196-208
    • /
    • 2015
  • This study analyzed the characteristics of sewer flow and its water quality, and investigated changes in the characteristics in three areas where the sewer rehabilitation projects have been carried out. In S1 area, the patterns of the flow became regular and the range of the fluctuation decreased after the sewer rehabilitation. The flow and its BOD concentration increased. The infiltration/inflow and exfiltration showed clear distinction before and after the sewer rehabilitation in this area. In S2 area, the patterns and the range of the fluctuation of the flow made no differences before and after the sewer rehabilitation. The flow decreased slightly and its BOD concentration increased considerably after the sewer rehabilitation. Big decrement in stormwater inflow but small in exfiltration appeared in this area. In S3 area, the patterns and the range of the fluctuation of the flow made no differences before and after the sewer rehabilitation. The flow decreased slightly and its BOD concentration increased in a small rate in this area.

난류 유동을 갖는 가스 포일 스러스트 베어링의 성능 예측 (Performance Predictions of Gas Foil Thrust Bearings with Turbulent Flow)

  • 문진혁;김태호
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.300-309
    • /
    • 2019
  • Gas foil thrust bearings (GFTBs) support axial loads in oil-free, high speed rotating machinery using air or gas as a lubricant. Due to the inherent low viscosity of the lubricant, GFTBs often have super-laminar flows in the film region at operating conditions with high Reynolds numbers. This paper develops a mathematical model of a GFTB with turbulent flows and validates the model predictions against those from the literature. The pressure distribution, film thickness distribution, load carrying capacity, and power loss are predicted for both laminar and turbulent flow models and compared with each other. Predictions for an air lubricant show that the GFTB has high Reynolds numbers at the leading edge where the film thickness is large and relatively low Reynolds numbers at the trailing edge. The predicted load capacity and power loss for the turbulent flow model show little difference from those for the laminar flow model even at the highest speed of 100 krpm, because the Reynolds numbers are smaller than the critical Reynolds number. On the other hand, refrigerant (R-134a) lubricant, which has a higher density than air, had significant differences due to high Reynolds numbers in the film region, in particular, near the leading and outer edges. The predicted load capacity and power loss for the turbulent flow model are 2.1 and 2.3 times larger, respectively, than those for the laminar flow model, thus implying that the turbulent flow greatly affects the performance of the GFTB.

수질오염총량관리 단위유역 유량측정자료를 이용한 유황곡선 작성 (Development of a Flow Duration Curve with Unit Watershed Flow Data for the Management of Total Maximum Daily Loads)

  • 박준대;오승영;최윤호
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.224-231
    • /
    • 2012
  • It is necessary to develop flow duration curve (FDC) on each unit watershed in order to analyze flow conditions in the stream for the management of Total Maximum Daily Loads (TMDLs). This study investigated a simple method to develop FDC for the general use of the curve. A simple equation for daily flow estimation was derived from the regression analysis between the 8-day interval flow data of a unit watershed and the daily flow monitoring data of an adjacent upstream region. FDC can be prepared with the calculation of daily flow by the equation for each unit watershed. An annual and a full-period FDC were drawn for each unit watershed in Guem river basin. Standard flow such as low and ordinary flow can be obtained from the annual FDC. Major percentile of flow such as 10, 25, 50, 75 or 90% can be obtained from the full-period FDC. It is considered that this simple method of developing FDC can be utilized more widely for the calculation of standard flow and the assessment of water quality in the process of TMDLs.

금호강 유역의 대장균 부하지속곡선 개발 및 적용 (Development and Application of Coliform Load Duration Curve for the Geumho River)

  • 정강영;임태효;김경훈;이인정;윤종수;허성남
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.890-895
    • /
    • 2012
  • Duration curves describe the percentage of time that a certain water quality (total/fecal coliform (=TC/FC)) or discharge is exceeded. The curves methodology are usually based on daily records and are useful in estimating how many days per year and event will be exceeded. The technique was further applied to estimated TC/FC loading to the Geumho River, using the daily mean flow rate and TC/FC concentration data during January, 2001 and December, 2011 for the Geumhogang6 (=Seongseo water level station) where an automated monitoring station is located in Gangchang-bridge. Low flow of the Seongseo (=11.1 cms) was equivalent to 75.3% on an exceedance probability scale. Load Duration curve for TC/FC loading at the Seongseo was constructed. Standard load duration curve was constructed with the water quality criteria for class III (TC/FC concentration = 5000/1000 CFU/ 100 mL). By plotting TC/FC observed load duration curve with standard load duration curve, it could be revealed that water quality do not meet the desired water quality for 68.8/11.2% on an exceedance probability scale. IF linear correlation between flow rate and coliform concentration is assumed, it can be interpreted that water quality exceed desired criteria when daily average flow rate is over 11.9/109.9 cms.

Part-load Performance of a Screw Chiller with Economizer using R22 and R407C

  • Chang, Young-Soo;Kim, Young-Il;Lee, Yong-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2005
  • Screw compressor chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions during most of the time. Therefore, information on the characteristics of part-load is very important for better chiller performance and energy economy. In this study, performance tests of screw chiller with economizer using R22 and R407C under part-load conditions have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when economizer volume ratio is 1.01. For the same cooling capacity condition at part-load, COP's of both non-economizer and economizer system showed similar values.