• Title/Summary/Keyword: Load factor

Search Result 3,067, Processing Time 0.033 seconds

Over-Strength of Low-Rise RC Frame in Low Seismic Zone (약지진동 지역의 저층 RC 골조의 초과강도)

  • 이영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.9-18
    • /
    • 1999
  • The seismic over-strength factor Ω is evaluated for 4-story reinforced concrete buildings in Korea, which has low seismic intensity. For this study, the seismic load suggested in' Aseismic guideline research- phase ll' (in Korea) is used. When 3D study-models are designed, span length and bay number are varied and accidental torsional moment is considered. And the models are analyzed by push-over analysis, in which external and internal frame are connected by rigid-link. As a result of numerical experiments, Ω is increased as the bay number or span length is increased. Because, by the including of accidental torsional moment in designing process, the increased ratio of strength of external columns is larger than the increased ratio of span length or bay number. And this makes the failure mode of model closer or strong-column and weak-beam mechanism.

  • PDF

An Analysis on the Effectiveness of Harmonics Reduction for Variable Frequency Drive by Reactors (리액터에 의한 가변주파수 구동장치의 고조파저감효과 분석)

  • Kim, Deok-Ki;Yoon, Kyoung-Kuk;Kim, Hee-Moon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.770-777
    • /
    • 2015
  • Recently, due to the rapid development of Power Electronics, the usage of Non Linear Load variable frequency drivers (VFDs) is increasing in the electric propulsion vessels and offshore plants. And harmonics which is generated by the variable frequency drives is an important issue should be solved. Ac line reactors and dc link reactors are widely used in variable frequency drives to improve the drive performance such as reducing input current harmonics, elevating input power factor, and protecting the drives from surges, etc. The effectiveness of both types of reactors in reducing input harmonics is affected by the loading of the drives and the system source impedance. And it considered that inductance of DC link reactors should be about 1.7 times of AC line reactors for same effect. The rules to evaluate the needs and effectiveness using ac line or dc link reactors are proposed for practical appications. In this paper, a simulation is performed to investigate of such factors using software PSIM.

The Effect of Running Speed and Slope on the Lower Extremity Biomechanics (달리기 속도와 경사가 하지관절의 생체역학에 미치는 영향)

  • Kim, Jongbin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.4
    • /
    • pp.160-167
    • /
    • 2020
  • This study analyzes the effects of changes in running velocity and slope on the biomechanical factors of the lower limb joints. For this purpose, 15 adult males in their 20s ran according to changes in running speed (2.7, 3.3 m/s) and slope ( -9°, -6°, 0°, 6°, 9°) on the treadmill, and their running characteristics (stride length, stride frequency). The range of motion of the lower limb joint and the vertical ground reaction force were greater in UR (p <.05), and the moment of the lower limb joint, braking force, thrust and load factor was large in DR (p <.05). In joint power, the ankle joint was greater in DR, and hip joint was greater in the UR (p <.05). These results show that the injuries of the ankle joint will be greater than other cases when running DR at a speed of 3.3 m/s.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Fatigue Life Prediction of Automotive Rubber Component Subjected to a Variable Amplitude Loading (가변진폭하중에서의 자동차 고무 부품의 피로 수명 예측)

  • Kim, Wan-Soo;Kim, Wan-Doo;Hong, Sung-In
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.209-216
    • /
    • 2007
  • Fatigue life prediction methodology of the rubber component made of vulcanized natural rubber under variable amplitude loadings was studied. The displacement-controlled fatigue tests were conducted at different levels and the maximum Green-Lagrange strain was selected as damage parameters. A fatigue life curve of the rubber represented by the maximum Green-Lagrange strain was determined from the nonlinear finite element analysis. The transmission load history of SAE as variable amplitude loading was used to perform the fatigue life prediction. And then a signal processing of variable loading by racetrack and simplified rainflow cycle counting methods were performed. The modified miner's rule as cumulative damage summation was used. Finally, when the gate value is 30%, the predicted fatigue life of the rubber component agreed well with the experimental fatigue lives with a factor of two.

A Study on Compressive Creep Behavior of ACM Rubber using TMA Thermal Analysis (TMA 열분석을 이용한 ACM 고무의 압축크립거동 연구)

  • Ahn, WonSool;Lee, Hyung Seok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.156-160
    • /
    • 2013
  • A study on compressive creep behavior of ACM rubber for automotive engine gasket was performed using TMA thermal analysis. From the results of isothermal measurements with constant load of 1 N at several different temperatures of 160, 180, 200, and $220^{\circ}C$, compressive creep data at the given temperatures were obtained, and therefrom, shift factor ($a_T$) and master curve at reference temperature of $160^{\circ}C$ were obtained using time-temperature superposition principle (TTSP). $C_1$ and $C_2$ of WLF (Williams-Landel-Ferry) equation were calculated through the WLF plot as -1.107 and 11.571, respectively. From this, life time of ACM rubber at $120^{\circ}C$ was predicted as about 24,000 hrs.

An Analysis of School Change of A Middle School according to the Free Semester Policy (자유학기제 정책에 따른 A중학교 학교변화 사례 분석)

  • Lee, In-Hoi
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2016
  • The purpose of this study was to analyze a case of school change according to the free semester policy and provide its suggestions for the entire implementation of the policy in 2016. For the study, a middle school case was examined qualitatively. The main results are as follows: First, the structural change and psychological change should be simultaneously implemented in order to bring out overall school change. Second, the free semester should be focused on either teaching and learning improvement or career experience by having concrete action plans. Third, school stakeholders' trust and expectation should be improved by the consistency and continuity of the policy, and local educational authorities should reduce teachers work load as well as unnecessary works from the other areas besides teaching.

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.

Verification of the Filter Media Applied to Filter Type Facility Considering the Treatment Efficiency Factor (여과형 시설에 적용되는 여재의 처리효율 영향인자를 고려한 실증화 평가)

  • Kim, Taeyoon;Lee, Junebae;Lee, Dongwoo;Shin, Hyunsuk;Kim, Hyunchul;Kwon, Soonchul
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Increased impervious surface caused by rapid urbanization serves to produce the discharge of non-point source pollutants such as total suspended solid (TSS). There exist various methods of removing TSS, including a filtration process using granular media (a well-known method to be practically used after the consideration of removal efficiency, clogging, and backwashing efficiency). To determine the TSS removal capability of the filter, we initially performed lab-scale experiments which assessed flow rates, influent concentrations, permeability co-efficients, the particular shapes of suspended solids and potential clogging, and also evaluated TSS removal efficiency when applied to filtration facility in a pilot-scale. In low filtration flux condition, the removal efficiency of suspended solids was more than 95 %, while decreased to 83% in high filtration flux. Regarding the clogging aspect of the experiment, total cumulative solids were loaded up to $19.15kg/m^2$, and TSS removal efficiency was noted to commence to decrease when the loaded solids exceeded $9.0kg/m^2$. It was also noted, however, that superior efficiency was maintained for six hours. In addition, for pilot-scale experiment, the removal efficiency was still high enough (83.4 %) for the solid concentration of 140 ~ 343 mg SS/L and after backwashing, head loss was recovered to 92 ~ 95 % during two hour filtration. With these results, It was confirmed that lifetime of the filter applied to the test was prolonged due to the high treatment efficiency and good backwashing efficiency for the cumulative solids load.

Studies on Fracture Criterion in Yellow Lauan(Shorea spp.) under Mode I, Mode II and Mixed Mode Loading (황(黃)라왕재(Shorea spp.)의 모드 I, 모드 II 및 혼합(混合)모드 하중시(荷重時) 파괴기준(破壞基準)에 관(關)한 연구(硏究))

  • Shim, Kug-Bo;Lee, Jun-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.61-72
    • /
    • 1992
  • This study was carried out to investigate the fracture behavior and the fracture criterion of yellow lauan(Shorea spp.), when has used for furniture and wood structures, and to offer a reliability for wood structure and basic data for wood fracture criterion in experiments which are fracture tested under mode I, mode II and mixed mode loading condition. The results were summarized as follows; 1. Fractures in specimens which have inclined grain in yellow lauan procedeed from crack tip in the radial direction along the grain. 2. In yellow lauan, $K_{IC}RL$ was 42.1kg/$cm^{3/2}$ and $K_{IIC}RL$ was 15.8kg/$cm^{3/2}$. 3. The fracture criteria of lauan were; ($K_I/K_{IC}$)+($K_{II}/K_{IIC}$)=1 in RL system with inclined grain at $45^{\circ}$, ($K_I/K_{IC}$)+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $15^{\circ}$ and $(K_I/K_{IC})^2$+$(K_{II}/K_{IIC})^2$=1 with inclined grain at $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$, respectively. 4. The fracture criterion of wood could vary with the species, and the load applying condition. In order to measure the fracture criterion strictly, along with standardization of specimen geometry a large amount of experimental data is needed. 5. $K_{IC}$(critical stress intensity factor) can be predicted by grain angle. As the grain inclined angle increased, $K_{IC}$ and $K_{IIC}$ are increased.

  • PDF