• 제목/요약/키워드: Load eccentric ratio

검색결과 56건 처리시간 0.024초

강관내부 보강재를 고려한 용접조립 각형 CFT 편심 장주의 내력 및 휨 거동 (Resistance and Flexure Behavior of Slender Welded Built-up Square CFT Column Using Internal Reinforced Steel Tube under Eccentric Loads)

  • 이성희;김영호;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.32-39
    • /
    • 2015
  • So far, square concrete filled tubular(CFT) columns have been used in a limited width thickness ratio. The reason is that local buckling occurs in steel tube easily. Once the local buckling occurs, the confinement effect of steel tube on concrete disappears. In this study, we developed welded built-up square steel tube with reinforcement which are placed at the center of the tube width acts as an anchor. 3 specimens of slender welded built-up square CFT columns and 3 specimens of slender welded built-up square steel tube columns were manufactured with parameters of width(B) of steel tube, width thickness ratio(B/t). we conducted a experimental test on the 6 specimens under eccentric load, and evaluated the structural resistance and behavior of 6 specimens.

Effect of load eccentricity on buckling behavior of FRP composite columns with open and closed cross sections

  • M Kasiviswanathan;M Anbarasu
    • Advances in Computational Design
    • /
    • 제8권1호
    • /
    • pp.61-76
    • /
    • 2023
  • Fiber reinforced polymer (FRP) columns are increasingly being used in various engineering fields due to its high strength to weight ratio and corrosion resistance. Being a thin-walled structure, their designs are often governed by buckling.Buckling strength depends on state of stress of elements which is greatly influence by stacking sequence and various inaccuracies such as geometric imperfections and imperfections due to eccentricity of compressive load and non-uniform boundary conditions. In the present work, influence of load eccentricity on buckling strength of FRP column has been investigated by conducting parametric study. Numerical analyses were carried out by using finite element software ABAQUS. The finite element (FE) model was validated using experimental results from the literature, which demonstrated good agreement in terms of failure loads and deformed shapes.The influence of load eccentricity on buckling behavior is discussed with the help of developed graphs.

편심하중을 받는 고성능강(HSA800) 조립 단주의 구조거동에 관한 해석적 연구 (Analytical Study on the Structural Behaviors of Stub Columns Fabricated with HSA800 of High Performance Steel Subjected to Eccentric Loads)

  • 유정한;김주우;양재근;강주원;이동우
    • 한국강구조학회 논문집
    • /
    • 제26권5호
    • /
    • pp.453-461
    • /
    • 2014
  • 본 연구에서는 건축구조용 고성능강 HSA800의 건축구조부재로의 적용을 위한 연구로써, 용접 제작된 각형강관 및 H형강에 대해 단주편심압축 실험을 바탕으로 해석모델을 이용한 검증이 이루어졌다. 특히, 고성능강 조립단주의 유한요소해석을 이용한 변수연구와 P-M 상관관계로부터 현행 기준의 적용여부를 평가하고자 하였으며, 폭두께비와 축력비를 주요변수로 두었다. 변수모델의 P-M상관도 분석결과, 압축력에 대한 비세장단면은 모두 현행기준의 요구에서 크게 상회하는 결과를 얻었고 축력비가 낮을수록 휨강도비에 충분한 여유를 갖는 것을 확인하였다. 압축력에 대한 세장판 단면을 갖는 각형강관의 경우, 현행기준의 요구에 못 미치는 결과를 보였다.

Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation

  • Trinh, Thanh-Huong;Nguyen, Dinh-Kien;Gan, Buntara S.;Alexandrov, S.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.515-532
    • /
    • 2016
  • The elastoplastic response of functionally graded material (FGM) beams resting on a nonlinear elastic foundation to an eccentric axial load is investigated by using the finite element method. The FGM is assumed to be formed from ceramic and metal phases with their volume fraction vary in the thickness direction by a power-law function. A bilinear elastoplastic behavior is assumed for the metallic phase, and the effective elastoplastic properties of the FGM are evaluated by Tamura-Tomota-Ozawa (TTO) model. Based on the classical beam theory, a nonlinear finite beam element taking the shift in the neutral axis position into account is formulated and employed in the investigation. An incremental-iterative procedure in combination with the arc-length control method is employed in computing the equilibrium paths of the beams. The validation of the formulated element is confirmed by comparing the equilibrium paths obtained by using the present element and the one available in the literature. The numerical results show that the elastoplastic post-buckling of the FGM beams is unstable, and the post-buckling strength is higher for the beams associated with a higher ceramic content. Different from homogeneous beams, yielding in the FGM beam occurs in the layer near the ceramic layer before in the layer near metal surface. A parametric study is carried out to highlight the effect of the material distribution, foundation support and eccentric ratio on the elastoplastic response of the beams.

A new bridge-vehicle system part II: Parametric study

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.21-38
    • /
    • 2003
  • The formulation of a new bridge-vehicle system using shell with eccentric beam elements has been introduced in a companion paper (Part I). The new system takes into account of the contribution of the twisting and pitching modes of vehicles to the bridge responses. It can also be used to study the dynamic transverse load distribution of a bridge. This paper presents a parametric study on the impact induced by one vehicle or multi-vehicle running across a bridge using the proposed model. Several parameters were considered as variables including the mass ratio, the speed parameter, the frequency ratio and the axle spacing parameter to investigate their effects on the impact factor. A total number of 189 cases were carried out in this parametric study. Within the realistic range of vehicle considered, the maximum impact factors could be 2.24, 1.78 and 1.49 for bridges with spans 10 m, 20 m and 30 m respectively.

편심하중을 받는 건축구조용 고강도 강재(HSA800) 단주의 거동에 관한 실험적 연구 (An Experimental Study on the Structural Behavior of Stub Columns with HSA800 High-strength Steels under Eccentric Loads)

  • 이강민;이명재;오영석;오근영;홍성빈
    • 한국강구조학회 논문집
    • /
    • 제26권4호
    • /
    • pp.289-297
    • /
    • 2014
  • 본 연구에서는 고강도강재(HSA800)의 단주 편심압축실험을 통해 휨-압축 부재의 강도를 평가하였다. 편심압축실험은 축력비에 따라 휨-압축의 조합력을 받는 부재의 P-M 상관관계를 알아보기 위해 HSA800강재의 각형강관과 H형강을 대상으로 실험을 수행하였으며, 가력 편심거리를 조정하여 다양한 P-M 조합에 대해 강도평가 실험을 수행하였다. 실험결과 실험최대 평균응력은 국부좌굴에 의한 최대내력이 결정된 실험체에 대해서는 판폭두께비가 증가함에 따라 감소하는 경향을 보였다. 발현강도의 여유는 축력이 낮을수록 상대적으로 휨강도에 대해 큰 마진을 보이고 있었고, 실험체 모두 현행 설계기준의 P-M 상관관계를 안전측으로 충족하였다.

편심을 받는 고강도콘크리트 장주의 2차모멘트에 관한 실험적 연구 (Experimental Study on Secondary Moment of High-Strength RC Slender Columns under Eccentric Loads)

  • 박동규;배성용;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.571-576
    • /
    • 1998
  • This paper is a part of a research plan aimed at the verification of basic design rules of high-strength concrete columns. A total of 19 slender column specimens were tested to measure secondary moment and stiffness of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356kg/$\textrm{cm}^2$ to 951kg/$\textrm{cm}^2$, the longitudinal steel ratios were between 1.13% and 5.51%, and slenderness ratios were 40 and 61. Calculated moment magnification factors and column stiffness based on design codes are higher than the test results for high axial load under small eccentricity, for higher slenderness ratio, for lower longitudinal steel ratio, and for high-strength concrete. The moment magnification method of the current design codes may provide a very conservative design for high-strength concrete slender column.

  • PDF

Elasto-plastic behaviour of perforated steel plates subjected to compression and bending

  • Maiorana, Emanuele;Pellegrino, Carlo;Modena, Claudio
    • Steel and Composite Structures
    • /
    • 제11권2호
    • /
    • pp.131-147
    • /
    • 2011
  • The aim of this work is to provide some insights into the elasto-plastic behaviour of plate girder web square and rectangular panels with centred and eccentric holes under both compression and in-plane bending moment. The numerical study was validated comparing the numerical results obtained for one simple steel plate configuration with the corresponding experimental results, obtained at the University of Padova, observing the influence of the initial out-of-plane imperfections on the force vs. displacement relationship and ultimate strength. Once validated the numerical approach, the effect of bending moment on the stability of the plate is studied and some differences with respect to the uniform compression load case are shown. The influence of dimension and position of the hole, the plate aspect ratio and the steel grade on elasto-plastic behaviour is observed. Some indications regarding the critical slenderness (at which transition from elastic to plastic collapse occurs) are given for square and rectangular plates with symmetric and eccentric holes having small, medium and large diameter.

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.