• Title/Summary/Keyword: Load disturbances

Search Result 254, Processing Time 0.03 seconds

A Study on Decentralized under Voltage Load Shedding Scheme for Preventing Wide-area Black Out (광역정전 예방을 위한 분산형 부하 제어 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • An electric power system sometimes fails because of disturbances that occur unexpectedly, such as the uncontrolled loss of load that developed from cascading blackout. Which make stability through a little of under voltage load shedding should work. The development of phasor measurement unit(PMU) makes network supervision possible. The information obtained from PMU is synchronized by global positioning system(GPS). There are many real-time algorithms which are monitoring the voltage stability. This paper presents the study on the VILS(Voltage Instability Load Shedding) using PMU data. This algorithm computes Voltage Stability Margin Index(VSMI) continuously to track the voltage stability margin at local bus level. The VSMI is expressed as active and reactive power. The VSMI is used as an criterion for load shedding. In order to examine the algorithm is effective, applied to KEPCO system.

Development of Power Supply Device for Load Characteristic Experimentation (부하특성실험을 위한 전원공급장치 개발)

  • Lee, Jong-Pil;Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • The reduced power quality due to some of disturbances on power system has great influence on the efficient and life of load for bad with serious economic loss. The response of load about disturbance needs to analysis quantitatively in detail to improve load characteristics. In this research, a power supply device is developed to supply disturbed power similar to that of power system. The developed device can output a voltage and frequency from 180[V] to 240[V], 55[Hz] to 65[Hz] respectively. The most outstanding feature of this device is a function to be performed steady and dynamic state characteristic experiment on load or appliances. Also, this device is designed to include high accuracy ouput and simple measurement.

비선형 다변수 발사대의 LQG/LTR 제어기 설계

  • 김종식;한성익;김용목;남세규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.133-142
    • /
    • 1992
  • A kineamatic nonlinear multivariable laundher is modeled of which the azimoth and elevation axes are drived simultaneously and SISO and MIMO LQG/LTR controllers are designed and evaluated for this system. Also, the suitable command input function is suggested for the desired command following performance and the LQG/LTR control system with disturbances and load variation is evaluated for the entire operating range by computer simulation. It is found that the linear SISO LQG/LTR controller can be used for the kinematic nonlinear multivariable launder in the entire operating range and is effective for disturbance rejection and load variation.

Adaptive Fuzzy Speed Controller Design for DC Servo Motor (직류 서보 전동기를 대상으로한 적응퍼지속도제어기의 설계)

  • Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.994-997
    • /
    • 2003
  • This Paper presents a study of the performance of a DC servo motor with a model reference adaptive fuzzy speed controller (MRAFSC) in the presences of load disturbances. MRAFSC comprised inner feedback loop consisting of the fuzzy logic controller (FLC) and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. Experimental results show the good performance in the DC servo motor system with the proposed adaptive fuzzy controller.

  • PDF

High performance speed control of induction motor using load torque observer (부하 토오크 관측기를 이용한 유도전동기의 고성능 속도제어)

  • 이성근;임영배;노창주;김윤식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.186-194
    • /
    • 1997
  • In this thesis, a new speed control algorithm based on the load torque observer theory is pro¬posed for the high performance speed control of a voltage source inverter to drive a 3 - phase induction motor. The proposed system becomes robust against disturbances using a feed -- for¬ward control of the load torque estimated at load torque observer. Computer simulation and experimental works using the proposed control confirm that transient response for the varia¬tion ofload torque becomes improved, compared with the conventional PI control method.

  • PDF

Application of artificial intelligence to industrial process control (인공지능을 이용한 공정제어)

  • 유병휘
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.248-250
    • /
    • 1986
  • This paper explain application of expert system techniques from the latest theories of artificial intelligence to industrial process control. This controller continuously monitors a loop's response to disturbances and adapts the tuning parameters (P.I.D) to provide the best response to load upset or set-point change.

  • PDF

Robust power control design for a small pressurized water reactor using an H infinity mixed sensitivity method

  • Yan, Xu;Wang, Pengfei;Qing, Junyan;Wu, Shifa;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1443-1451
    • /
    • 2020
  • The objective of this study is to design a robust power control system for a small pressurized water reactor (PWR) to achieve stable power operations under conditions of external disturbances and internal model uncertainties. For this purpose, the multiple-input multiple-output transfer function models of the reactor core at five power levels are derived from point reactor kinetics equations and the Mann's thermodynamic model. Using the transfer function models, five local reactor power controllers are designed using an H infinity (H) mixed sensitivity method to minimize the core power disturbance under various uncertainties at the five power levels, respectively. Then a multimodel approach with triangular membership functions is employed to integrate the five local controllers into a multimodel robust control system that is applicable for the entire power range. The performance of the robust power system is assessed against 10% of full power (FP) step load increase transients with coolant inlet temperature disturbances at different power levels and large-scope, rapid ramp load change transient. The simulation results show that the robust control system could maintain satisfactory control performance and good robustness of the reactor under external disturbances and internal model uncertainties, demonstrating the effective of the robust power control design.

Active Force Control of Electro-Hydraulic Hybrid Load Simulator using Quantitative Feedback Theory (QFT를 이용한 전기유압 하이브리드 부하 시뮬레이터의 능동 힘제어)

  • Yoon, Joo-Hyeon;Ahn, Kyoung-Kwan;Truong, Dinh Quang;Jo, Woo-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • Today, reduction of $CO_2$ exhaustion gas for global-warming prevention becomes important issues in all industrial fields. Hydraulic systems have been widely used in industrial applications due to high power density and so on. However hydraulic pump is always being operated by engine or electric motor in the conventional hydraulic system. Therefore most of the conventional hydraulic system is not efficient system. Recently, an electro-hydraulic hybrid system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. In the electro-hydraulic hybrid system, hydraulic pump is operated by electric motor only when hydraulic power is needed. Therefore the electro-hydraulic system can reduce the energy consumption drastically when compared to the conventional hydraulic systems. This paper presents a new kind of hydraulic load simulator which is composed of electro-hydraulic hybrid system. Disturbances in the real working condition make the control performance decrease or go bad. QFT controller is designed to eliminate or reduce the disturbance and improve the control performance of the electro-hydraulic load simulator. Experimental results show that the proposed controller is verified to apply for electro-hydraulic hybrid system with varied external disturbances.

A Disturbance Observer-Based Robust Controller Against Load Variations in a Single Phase DC/AC Inverter System (단상 DC/AC 인버터 시스템의 부하변동을 고려한 외란 관측기 기반 제어기)

  • Kim, Sung-Jong;Jeong, Yu-Seok;Son, Young-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.21-26
    • /
    • 2007
  • Output voltage waves of a DC/AC inverter system are likely to be distorted if variable loads e.g. motors or rectifiers exist in the output terminal. This paper designs a disturbance observer-based PI-controller for a single-phase inverter system that is robust against load changes. In this Paper, we regard the output voltage changes due to various loads as disturbances of the control system. Then we design a disturbance observer for estimation of the disturbances caused by the load current and any other error sources (such as parameter uncertainties and model mismatches etc.). In order to test the performance of the proposed control law, simulation studies are carried out for a single-phase inverter system using SimPowerSystem of Matlab Simuink. Compared to a simple PI-control, the disturbance observer-based controller shows enhanced performance in transient responses for step load changes.

The Characteristic Improvement of Inverter Output for Static UPS (UPS용 인버터 출력특성 개선)

  • Kim, D.U.;Kim, Y.P.;Shin, H.J.;Baek, B.S.;Ryu, S.P.;Min, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2051-2053
    • /
    • 1998
  • In spite of nonlinear or step-changing load and line disturbances, the inverter for the UPS must provide the pure sinusoidal output voltage with low THD(Total Harmonics Distortion). This paper proposes an inverter controller for the UPS which has a good dynamic response characteristic and robustness for applying industrial world directly. The inverter output voltage is controlled instantaneously with a double regulation loop by a TMS320C31 Digital Signal Processor so that it has very good dynamic response for nonlinear or step-changing load and line disturbances. To improve the voltage utilization and response characteristics, the Space Vector Modulation(SVM) technique is adapted for the switching method of this system. The characteristics of the proposed control system were verified by simulations and experiments.

  • PDF