• Title/Summary/Keyword: Load combinations

Search Result 210, Processing Time 0.02 seconds

A reliability-based approach to investigate the challenges of using international building design codes in developing countries

  • Kakaie, Arman;Yazdani, Azad;Salimi, Mohammad-Rashid
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.677-688
    • /
    • 2021
  • The building design codes and standards in many countries usually are either fully or partially adopted from the international codes. However, regional conditions like the quality of construction industry and different statistical parameters of load and resistance have essential roles in the code calibration of building design codes. This paper presents a probabilistic approach to assess the reliability level of adopted national building codes by simulating design situations and considering all load combinations. The impact of the uncertainty of wind and earthquake loads, which are entirely regional condition dependent and have a high degree of uncertainty, are quantified. In this study, the design situation is modeled by generating thousands of numbers for load effect ratios, and the reliability level of steel elements for all load combinations and different load ratios is established and compared to the target reliability. This approach is applied to the Iranian structural steel code as a case study. The results indicate that the Iranian structural steel code lacks safety in some load combinations, such as gravity and earthquake load combinations, and is conservative for other load combinations. The present procedure can be applied to the assessment of the reliability level of other national codes.

Design loads for floating solar photovoltaic system: Guide to design using DNV and ASCE standards

  • Gihwan Kim;Moonsu Park
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.171-179
    • /
    • 2024
  • The market of the floating solar photovoltaic system is rapidly growing around the world with the rise of renewable energy that can replace fossil energy. While the floating solar photovoltaic system is operating and being installed in several countries, the system is exposed to the risk in terms of structural safety due to the absence of the proper design guideline. In this paper, design loads suitable for the floating solar photovoltaic system are presented. Utilizing the existing reliable design standards such as ASCE 7-16 (ASCE 7-16 2016) and DNV-RP-C205 (DNV-RP-C205 2010), the appropriate design loads for the floating solar photovoltaic system are presented. The proper load combinations are also presented by putting wave load based on DNV standards (DNV-OS-C101 2015 and DNV-OS-C201 2015) into the load combinations in ASCE standards (ASCE 7-16 2016). We present the load combinations for the allowable stress design and load and resistance factor design, respectively.

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

Comparison between reinforced concrete designs based on the ACI 318 and BS 8110 codes

  • Tabsh, Sami W.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.467-477
    • /
    • 2013
  • Municipalities in the United Arab Emirates approve reinforced concrete design of building structures to follow either the ACI 318 or the BS 8110 code. Since the requirements of these codes are different from each, there is a need to compare the structural demand in the two codes. The main objective of this study is to compare the design requirements of the ACI 318 code with the BS 8110 code for the flexural, shear and axial compression limit states. The load factors and load combinations in the two codes are also compared. To do so, a large number of cross-sections with different geometries, material properties, and reinforcement ratios are analyzed following the procedures in the two codes. The relevant factored load combinations in the two codes are also investigated for a wide range of live-to-dead load ratios and for various wind-to-dead load ratios. The study showed that the differences between the design capacities in the ACI 318 and BS 8110 codes are minor for flexure, moderate for axial compression, and major for shear. Furthermore, the factored load combinations for dead load, live load and wind in the two codes yield minor-to-moderate differences, depending on the live-to-dead load ratio and intensity of wind.

Optimal wind-induced load combinations for structural design of tall buildings

  • Chan, C.M.;Ding, F.;Tse, K.T.;Huang, M.F.;Shum, K.M.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.323-337
    • /
    • 2019
  • Wind tunnel testing technique has been established as a powerful experimental method for predicting wind-induced loads on high-rise buildings. Accurate assessment of the design wind load combinations for tall buildings on the basis of wind tunnel tests is an extremely important and complicated issue. The traditional design practice for determining wind load combinations relies partly on subjective judgments and lacks a systematic and reliable method of evaluating critical load cases. This paper presents a novel optimization-based framework for determining wind tunnel derived load cases for the structural design of wind sensitive tall buildings. The peak factor is used to predict the expected maximum resultant responses from the correlated three-dimensional wind loads measured at each wind angle. An optimized convex hull is further developed to serve as the design envelope in which the peak values of the resultant responses at any azimuth angle are enclosed to represent the critical wind load cases. Furthermore, the appropriate number of load cases used for design purposes can be predicted based on a set of Pareto solutions. One 30-story building example is used to illustrate the effectiveness and practical application of the proposed optimization-based technique for the evaluation of peak resultant wind-induced load cases.

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.153-164
    • /
    • 2000
  • Numerical studies were carried out to investigate long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was developed. It can address creep and shrinkage as weel as geometrical and material nonlinearity, and also it can address various load combinations and loading sequences of transverse load, in-plane compressive load and time. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with four parameters; 1) loading sequence of floor load, compressive load and time 2) uniaxial and biaxial compression 3) the ratio of dead to live load 4) span length. Through the numerical studies, the behavioral characteristics of the flat plates and the governing load combinations were examined. These results will be used to develop a design procedure for the long-term behavior of flat plates in the future.

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars

  • Unsal, Ismail;Tokgoz, Serkan;Cagatay, Ismail H.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.629-637
    • /
    • 2017
  • Continuous concrete beams are commonly used as structural members in the reinforced concrete constructions. The use of fiber reinforced polymer (FRP) bars provide attractive solutions for these structures particularly for gaining corrosion resistance. This paper presents experimental results of eight two-span continuous concrete beams; two of them reinforced with pure glass fiber reinforced polymer (GFRP) bars and six of them reinforced with combinations of GFRP and steel bars. The continuous beams were tested under monotonically applied loading condition. The experimental load-deflection behavior and failure mode of the continuous beams were examined. In addition, the continuous beams were analyzed with a numerical method to predict the load-deflection curves and to compare them with the experimental results. Results show that there is a good agreement between the experimental and the theoretical load-deflection curves of continuous beams reinforced with pure GFRP bars and combinations of GFRP and steel bars.

A Study on the Resetting of Incremental Heat Rate Curve of Combined Cycle Unit by Combination (복합발전기 조합별 증분비 곡선 재설정에 관한 연구)

  • Hong, Sang-Beom;Choi, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.8-12
    • /
    • 2019
  • Combined Cycle Unit(CC) generates the primary power from the Gas Turbine(GT) and supplies the remaining heat of the GT to the Steam Turbine(ST) to generate the secondary power from the ST. It plays a major role in terms of energy efficiency and Load Frequency Control(LFC). Incremental Heat Rate(IHR) curves of economic dispatch(ED) of CC is applied differently by GT/ST combination. But It is practically difficult because of performance test by all combinations. This paper suggests a reasonable method for estimating IHR curves for partial combinations(1:1~(N-1):1) using IHR curves when operating with GT alone(1:0) and with all(N:1) combinations of CC.

Design of integral abutment bridges for combined thermal and seismic loads

  • Far, Narges Easazadeh;Maleki, Shervin;Barghian, Majid
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.415-430
    • /
    • 2015
  • Integral abutment bridges have many advantages over bridges with expansion joints in terms of economy and maintenance costs. However, in the design of abutments of integral bridges temperature loads play a crucial role. In addition, seismic loads are readily transferred to the substructure and affect the design of these components significantly. Currently, the European and American bridge design codes consider these two load cases separately in their recommended design load combinations. In this paper, the importance and necessity of combining the thermal and seismic loads is investigated for integral bridges. A 2D finite element combined pile-soil-structure interactive model is used in this evaluation. Nonlinear behavior is assumed for near field soil behind the abutments. The soil around the piles is modeled by nonlinear springs based on p-y curves. The uniform temperature changes occurring at the time of some significant earthquakes around the world are gathered and applied simultaneously with the corresponding earthquake time history ground motions. By comparing the results of these analyses to prescribed AASHTO LRFD load combinations it is observed that pile forces and abutment stresses are affected by this new load combination. This effect is more severe for contraction mode which is caused by negative uniform temperature changes.