• 제목/요약/키워드: Load bearing capacity

검색결과 1,134건 처리시간 0.024초

연직하중을 받는 경사말뚝의 연직지지력에 관한 연구 (A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load)

  • 성인출;이민희;최용규;권오균
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.49-55
    • /
    • 2003
  • 본 연구에서는 연직말뚝과 경사말뚝에 대하여 수행한 압력토조 모형실험을 통하여 경사말뚝의 연직하중과 침하량 관계로부터 경사각도에 따른 압축지지력의 증가양상을 분석하였다. 실트질 모래로 형성된 상대밀도 50%의 포화지반에 경사각 0$^\circ$, 5$^\circ$, $10^\circ$, 15$^\circ$, 20$^\circ$의 모형 개단강관말뚝을 항타 관입하였으며, 압력토조내의 구속압력을 35, 70, 그리고 120 kPa로 변화시키면서 재하실험을 수행하였다. 연직 압축지지력은 경사각도가 커짐에 따라 증가하였으며 분석방법에 따라 증가율에는 다소의 차이가 수반되었으나 경사각 5$^\circ$, $10^\circ$, 15$^\circ$인 경우 지지력 증가율은 각각 111, 121, 127 ~ 140 % 정도를 나타내었다. 경사각이 20$^\circ$ 이상인 경우에는 말뚝 두부의 전도로 인하여 모형실험의 수행이 곤란하였다.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

말뚝지지 전면기초 (Piled Raft Foundations)

  • 권오균;이활
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 기초기술위원회 워크샵
    • /
    • pp.102-117
    • /
    • 2002
  • The general design practice for piled footings is based on the assumption that the piles are free-standing, and that all the external loads are carried by the piles, with any contribution of the footing being ignored. This approach is not reasonable, because the footing itself is actually in direct contact with the soil, and thus carries a significant fraction of the loads. In the case of not considering the bearing capacity of footing, the bearing capacity of group piles can be evaluated conservatively in the designing the group piles. There are a number of reasons why the idea of piled raft design with considering the capacity of footing has not become widely used. One of the reasons is the lack of reliable calculation methods for estimating the behavior of piled raft. In this study the bearing capacity, settlement, load distribution, etc. of piled raft footing are studied.

  • PDF

A simple approach for quality evaluation of non-slender, cast-in-place piles

  • Zhang, Ray Ruichong
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.1-17
    • /
    • 2008
  • This study proposes a conceptual framework of in-situ vibration tests and analyses for quality appraisal of non-slender, cast-in-place piles with irregular cross-section configuration. It evaluates a frequency index from vibration recordings to a series of impulse loadings that is related to total soil-resistance forces around a pile, so as to assess if the pile achieves the design requirement in terms of bearing capacity. In particular, in-situ pile-vibration tests in sequential are carried out, in which dropping a weight from different heights generates series impulse loadings with low-to-high amplitudes. The high-amplitude impulse is designed in way that the load will generate equivalent static load that is equal to or larger than the designed bearing capacity of the pile. This study then uses empirical mode decomposition and Hilbert spectral analysis for processing the nonstationary, short-period recordings, so as to single out with accuracy the frequency index. Comparison of the frequency indices identified from the recordings to the series loadings with the design-based one would tell if the total soil resistance force remains linear or nonlinear and subsequently for the quality appraisal of the pile. As an example, this study investigates six data sets collected from the in-situ tests of two piles in Taipu water pump project, Jiangshu Province of China. It concludes that the two piles have the actual axial load capacity higher than the designed bearing capacity. The true bearing capacity of the piles under investigation can be estimated with accuracy if the amplitude of impact loadings is further increased and the analyses are calibrated with the static testing results.

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

각형강관을 이용한 스터드-런너 골조형 벽체시스템의 구조내력 성능평가 (Structural Load Bearing Capacity of Wall System Framed by Studs and Runners using Square Steel Tubes)

  • 김호수;홍석일;임영도
    • 한국강구조학회 논문집
    • /
    • 제17권3호통권76호
    • /
    • pp.253-262
    • /
    • 2005
  • 본 논문에서 제시된 스터드-런너 골조형 벽체시스템은 일반구조용 각형강관(열간성형강)을 구조부재로 사용하여 벽체를 구성하고, 수평부재인 런너에 의해 보강되어 있기 때문에 스틸하우스와 비교하여 단위벽체의 내력성능 증가 및 좌굴에 대한 효율적 거동을 기대할 수 있으며, 또한 경량기포콘크리트를 충전함으로써 차음성능 및 단열의 효과를 기대할 수 있다. 이와 같은 시스템을 중 저층(3~5층)규모의 공동주택 및 사무실건물에까지 적용하기 위해, 런너의 설치간격과 경량기포콘크리트의 타설효과를 변수로 하여 실제규모의 단위벽체를 시험체로 제작하여 연직하중 및 수평하중에 대한 내력성능평가가 필요하다. 따라서, 본 논문에서는 경량기포콘크리트의 타설효과를 고려하여 연직하중에 대한 축내력성능평가와 수평하중에 대한 전단내력성능평가를 통해 스터드-런너 골조형 벽체시스템의 구조적성능을 분석하고자 한다.

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

CPR 공법의 압축재하시험을 통한 기초지반의 보강효과 (Effect of CPR Foundation Reinforcement Assessed by Compressive Loading Tests)

  • 강성승;김정한;노정두;고진석
    • 지질공학
    • /
    • 제29권3호
    • /
    • pp.211-222
    • /
    • 2019
  • 본 연구는 CPR 공법을 적용한 압축재하시험을 통하여 지반의 항복하중과 허용지지력을 평가하여 기초 지반 보강효과를 확인하기 위한 것이다. 주입재의 평균압축강도는 계획된 강도보다 높게 나타났다. 또한 각 지층에서 표준관입시험 결과는 시험 전보다 시험 후의 평균 N값이 향상되었다. 즉, 이것은 지반의 지지력을 증대시키는 효과를 가져왔음을 의미한다. 두 종류의 CPR 말뚝 압축재하시험 결과에 의하면, 최대 재하하중에 의한 전침하량과 순침하량은 CPR 말뚝직경 허용범위를 초과하는 침하량을 나타냈다. 침하량 기준과 하중-침하량 곡선에 의해 산정한 항복하중 및 허용지지력은 적용되는 방법에 따라 값의 편차가 크게 나타났다. 따라서 허용지지력은 다양한 항복하중 산정법을 적용한 후 종합적인 분석을 통하여 최적의 값을 결정할 필요성이 있다고 사료된다.

표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향 (Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing)

  • 황성호;김대연;김태호
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

공기윤활 틸팅패드 저어널 베어링의 윤활특성해석 (The Lubrication Analysis of Air-Lubricated Tilting Pad Joumal Beadng by Direct Method)

  • 김인식;황평
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1993년도 제18회 학술대회 초록집
    • /
    • pp.85-91
    • /
    • 1993
  • Air-Lubricated tilting pad journal bearing that has high stability is analyzed by using the direct method, and this bearing is usually used to need high precision. The pressure that supports the shaft is occured by the differences between the shaft and pads radii of curvatures. So the characteristics of load capacity for their variable values is important. In this paper the load capacity is compared with some of the eccentricity ratio values. The large load oapacity comes form large eccentricity ratio, high bearing number and high preload. But if the preload becomes too high, the shaft comes into contact with the pads. Stiffness and damping coefficients are compared with some of the preload, too. The coefficients decreased along compressibility number with constant load.

  • PDF