• Title/Summary/Keyword: Load and Resistance Factor Design

Search Result 190, Processing Time 0.028 seconds

Target Reliability Index and Load-resistance Factors for the Gravitational Loads-governed Limit States for a Reliability-based Bridge Design Code (신뢰도기반 교량설계기준의 중력방향하중 지배 한계상태에 대한 목표신뢰도지수 및 하중-저항계수)

  • Kim, Jeong-Gon;Kim, Ho-Kyung;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • This paper presents a new class of the vehicular live load factor for a reliability-based bridge design code. The significance of the current vehicular live load factor of 1.8 is investigated based on the return period of the vehicular live load and the design life of a bridge. It is shown that the current vehicular live load factor corresponds to a return period of 6.7 million years for a 100-year design life, which seems to be unrealistic in an engineering sense, and that the target reliability of 3.72 is set to too high without any reasoning for the gravitational load-governed limit state compared with that of the other limit states. In case the same return period as the design wind velocity or the ground acceleration is employed for the vehicular live load, the corresponding vehicular live load factor becomes around 1.15, and the target reliability index for the return period may be selected as 2.0 or 2.5 depending on the governing load effect. The complete sets of the load-resistance factors for the proposed target reliability indices are evaluated through optimization.

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.

The method using dynamic load and static load figures out gust factor of the membrane structure (동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법)

  • Wang, Ben-Gang;Jeong, Jae-Yong;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.19-24
    • /
    • 2008
  • The thesis is for gust factor needing when calculate the wind resistance design. For the gust factor, to the membrane structural model, carry through the wind tunnel test and the static load test. Therefore, at first through the tensile test of the fabric material, designate the material of the membrane structural model. Then, to saddle, wave, arch and point four kinds of basic shape membrane structural models, carry on the wind tunnel test, determine their dynamic load and distortion on lateral direction. Finally, according to distort situation of the membrane structure in the wind tunnel test, carry on the static load experiment outside of the wind tunnel, calculate static load which corresponding with distort. According to dynamic load and the static load, figure out gust factor of these kinds of basic membrane structure.

  • PDF

Resistance Factor and Target Reliability Index Calculation of Static Design Methods for Driven Steel Pipe Pile in Gwangyang (광양지역에 적합한 항타강관말뚝의 목표신뢰성지수 및 저항계수 산정)

  • Kim, Hyeon-Tae;Kim, Daehyeon;Lim, Jae-Choon;Park, Kyung-Ho;Lee, Ik-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8128-8139
    • /
    • 2015
  • Recently, the necessity of developing the load and resistance factor design(LRFD) for soft ground improvement method has been raised, since the limit state design is requested as international technical standard for the foundation of structures. In this study, to develop LRFD codes for foundation structures in Korea, target reliability index and resistance factor for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 16 data(in Gwangyang) and the 57 data(Korea Institute of Construction Technology, 2008) sets of static load test and soil property tests conducted in the whole domestic area were collected along with available subsurface investigation results. The resistance bias factors were evaluated for the tow static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods : the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. As a result, when target reliability indices of the driven pipe pile were selected as 2.0, 2.33, 2.5, resistance factor of two design methods for SPT N at pile tip less than 50 were evaluated as 0.611~0.684, 0.537~0.821 respectively, and STP N at pile tip more than 50 were evaluated as 0.545~0.608, 0.643~0.749 respectively. The result from this research will be useful for developing various foundations and soil structures under LRFD.

Load Rating of Bridges and Load Test of Agricultural Slab Bridge (교량의 내하력 평가 및 농로교의 하중시험)

  • Yang, Seung-Ie;Kim, Han-Joong;Kim, Jin-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.239-249
    • /
    • 2003
  • The bridges, which were built between 20 and 30 years ago in rural area, have to support unexpected overload caused by excessive amount of transportation. For these rural bridges, repairs and replacements are needed. To avoid the high cost of rehabilitation, the bridge rating must correctly report the present load-carrying capacity. Rating engineers use Allowable Stress Design (ASD), Load Factor Design (LFD), and Load Resistance Factor Design (LRFD) to evaluate the bridge load carrying capacity. In this paper, the load rating methods are introduced, and it is illustrated how to use the load test data from literature survey. Load test is conducted to the bridge that was built 30 years ago in rural area. From load test results, new maintenance strategy is suggested instead of the bridge replacement.

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

Design Comparison of Totally Prefabricated Bridge Substructure Systems Designed by Present Design and LRFD Methods (현행설계법 및 하중저항계수설계법에 의한 완전 조립식 교량 하부구조의 설계결과 비교)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.11-22
    • /
    • 2011
  • The design comparison and nonlinear analysis of totally prefabricated bridge substructure systems are performed. The prefabricated bridge substructures are designed by the methods of present design and load and resistance factor design (LRFD). For the design, the current Korea Highway Bridge Code (KHBD), with DB-24 and DL-24 live loads, is used. This study evaluates the present design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures, was used.

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF

Resistance Factors of Driven Steel Pipe Piles for LRFD Design in Korea (LRFD 설계를 위한 국내 항타강관말뚝의 저항계수 산정)

  • Park, Jae Hyun;Huh, Jungwon;Kim, Myung Mo;Kwak, Kiseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.367-377
    • /
    • 2008
  • As part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 57 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and these load test piles were sorted into two cases: SPT N at pile tip less than 50, SPT N at pile tip equal to or more than 50. The static bearing capacity formula and the Meyerhof method using N values were applied to calculate the expected design bearing capacities of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods: the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, in consideration of the reliability level of the current design practice, redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure. Resistance factors of driven steel pipe piles were recommended based on the results derived from the First Order Reliability Method and the Monte Carlo Simulation method.

A Study on the fire-resistance of concrete-filled steel square tube columns without fire protection under constant central axial loads

  • Park, Su-Hee;Choi, Sung-Mo;Chung, Kyung-Soo
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.491-510
    • /
    • 2008
  • This paper presents a plan and guidelines that were drawn for Korean based research carried out on the fire-resistance of CFT columns. This research was carried out by reviewing the Korean regulations related to the fire-resistance of CFT columns and examining studies which had been made in Korea as well as overseas. The first phase of the study plan was to compare the fire-resistance of square CFT columns without fire protection (obtained through fire-resistance tests and numerical analyses) with estimated values (obtained through fire-resistance design formulas proposed in Korea and overseas). This comparison provided conclusions as outlined below. Fire-resistance tests conducted in this study proved that, when the actual design load is taken into consideration, square CFT columns without fire protection are able to resist a fire for more than one hour. A comparison was made of test and analysis results with the fire-resistance time based on the AIJ code, the AISC design formula and the estimation formula suggested for Korea. The results of this comparison showed that the test and analysis results for specimens SAH1, SAH2-1, SAH2-2 and SAH3 were almost identical with the AIJ code, the AISC design formula and estimation formula. For specimens SAH4 and SAH5, the estimation formula was more conservative than the AIJ code and the AISC design formula. It was necessary to identify the factors that have an influence on the fire-resistance of CFT columns without fire protection and to draw fire-resistance design formulas for these columns. To achieve this, it is proposed that numerical analyses and tests be conducted in order to evaluate the fire-resistance of circular CFT columns, the influence of eccentricity existing as an additional factor and the influence of the slenderness ratio of the columns. It is also suggested that the overall behavior of CFT structures without fire protection within a fire be evaluated through analysis simulation.