• Title/Summary/Keyword: Load and Resistance Factor Design

Search Result 190, Processing Time 0.029 seconds

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 2. Sliding of Caissons (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 2. 케이슨의 활동)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2006
  • This is the second of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. In this paper, Part 2, we deal with sliding of caissons. The failure modes of a vertical breakwater, which consists of a caisson mounted on a rubble mound, include the sliding and overturning of the caisson and the failure of the rubble mound or subsoil, among which most frequently occurs the sliding of the caisson. The traditional deterministic design method for sliding failure of a caisson uses the concept of a safety factor that the resistance should be greater than the load by a certain factor (e.g. 1.2). However, the safety of a structure cannot be quantitatively evaluated by the concept of a safety factor. On the other hand, the reliability design method, for which active research is being performed recently, enables one to quantitatively evaluate the safety of a structure by calculating the probability of failure of the structure. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed, i.e., Level 1, 2, and 3. In this study, we apply the reliability design methods to the sliding of the caisson of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the allowable value, indicating that the breakwater was under-designed. The probability of failure after reinforcement, however, is close to the allowable value, indicating that the breakwater is no longer in danger. On the other hand, the results of the different reliability design methods are in fairly good agreement, confirming that there is not much difference among different methods.

A Study on the Stability Analysis of Reinforced Embankment on the Soft Ground (연약지반상의 보강성토의 안정해석에 관한 연구)

  • 임종철;전미옥;박이근;정연인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.285-296
    • /
    • 1999
  • Preloading method is used to prevent the settling of a foundation and to increase the strength of ground by consolidation settlement in advance. But, the embankment used in preloading method brings large deformation and sliding failure in the soft ground. Recently, reinforcement method is often used in embankment in order to prevent sliding failure. But, until now, the research on the stability analysis considering both the rate of strength increase of clay by embankment load and increase of resistance force by the geosynthetics in the embankment body is not found. In this study, the stability analysis program(REAP) for embankment including these two points is developed. By this program(REAP), the stability analysis can be done about during the gradual increase of embankment and the stability counterplan can be established when the safety factor is lower than allowable safety factor of design. After calculating the position of sliding failure surface, the force of geosynthetics which is selected by either the effective tensile strength or tensile force caused by the displacement of soil mass in this position is applied to stability analysis. And the increase of resisting moment can be calculated by this force. Also, the construction period can be estimated and the time for the appropriate counterplan can be decided in order to maintain the stability of embankment. And then, safe and economical embankment design can be performed.

  • PDF

Development and Splice Lengths of FRP Bars with Splitting Failures (쪼갬파괴에 의한 FRP 보강근의 정착길이와 이음길이)

  • Chun, Sung-Chul;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.519-525
    • /
    • 2010
  • Data from beam-based bond tests for FRP bars in the literature were collected and regression analyses were conducted for the data of splitting failure. Average bond strengths obtained from splice tests were found to be lower and more affected by C/$d_b$ values than average bond strengths from anchorage tests, indicating needs of new design equation for the splice length of FRP bars based on the data of splice tests only. In addition, the variation of bond strengths was greater than that of tensile strengths of FRP bars and, therefore, a new safety factor should be involved for the design equation. Five percent fractile coefficients were used to develop the design equations based on the assumption that load and resistance factors for FRP reinforced concrete structures are same to the factors for steel reinforced concrete structures. The proposed design equations give economical and reliable lengths for development and splice of FRP bars. The proposed equation for splice provides shorter lengths than the ACI 440 equation in case of C/$d_b$ of 3.0 or greater. Because FRP bars are expected to be used in slabs and walls exposed to weather with thick cover and large spacing between bars, the proposed equation gives optimal splice lengths.

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing (볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.

Reliability Analyses of Breakwater Armor Blocks of Harbors in Korea (국내 항만의 방파제 피복 블록의 신뢰성 해석)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.15-29
    • /
    • 2009
  • Most breakwater armor blocks are designed by using Hudson's or van der Meer's formula. The minimum weight of armor blocks is calculated by equating the resistance to the load in each formula. The larger value is then chosen as the design weight. In this study, we have performed reliability analyses for thus designed breakwater armor blocks of 12 trade harbors and 8 coastal harbors in Korea. The probability of failure calculated by the reliability analysis provides a criterion for evaluating the stability of armor blocks. The calculated probability of failure was almost same for all the breakwaters so that we were able to quantitatively evaluate the safety level of armor blocks of existing breakwaters. We also found that the safety factor used in the deterministic design method and the probability of failure in the reliability design method show a linear relationship. Therefore the probability of failure of existing breakwaters can be quantitatively calculated from the safety factors. The calculated probability of failure could also be used for determining the target probability of failure in the future.

Development of Permit Vehicle Classification System for Bridge Evaluation in Korea (허가차량 통행에 대한 교량의 안전성 평가를 위한 허가차량 분류 체계 개발)

  • Yu, Sang Seon;Kim, Kyunghyun;Paik, Inyeol;Kim, Ji Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.845-856
    • /
    • 2020
  • This study proposes a bridge evaluation system for indivisible permit vehicles such as hydraulic cranes. The permit loads for the bridge evaluation are divided into three categories: routine permit loads, special permit 1 loads, and special permit 2 loads. Routine permit and special permit 1 vehicles are allowed to cross a bridge with normal traffic. For these two permits, the standard lane model in the Korean Highway Bridge Design Code was adopted to consider normal traffic in the same lane. Special permit 2 vehicles are assumed to cross a bridge without other traffic. Structural analyses of two prestressed-beam bridges and two steel box girder bridges were conducted for the proposed permit loads. The rating factors of the four bridges for all permit loads were calculated as sufficiently large values for the moment and shear force so that crossing the bridges can be permitted. A reliability assessment of the bridges was performed to identify the reliability levels for the permit vehicles. It was confirmed that the reliability level of the minimum required strength obtained by the load-resistance factors yields the target reliability index of the design code for the permit vehicles.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

An Experimental Study on a Performance Evaluation of Internal Insulation of Buildings Over 20 Years Old (20년 이상 경과된 노후건축물의 단열재 성능평가에 관한 실험적 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Recently, the international community signed a climate change agreement to prevent global warming. Yet currently, the fossil fuels have been widely used in to supply building energy for cooling and heating. The Green Building certification (G-SEED), an energy efficiency rating for new or existing buildings requires that buildings meet certain conditions. Insulation is used as a building material to reduce the energy supply to buildings and to improve the thermal insulation, and it accounts for more than 90% of the total heat resistance provided by the building surface components that meet the energy-saving design standards of new buildings. In this investigation, a performance evaluation study was conducted through an experimental study by directly extracting the foam polystyrene insulation on-site during the remodeling of a building that was in the range of 22~38 years old. Through tests, it was found that the thermal conductivity of the extrusion method insulation (XPS) was reduced by 48% and the compressive strength of XPS decreased by 36% compared to KS M 3808, which is the initial quality standard. For bead method insulation (EPS) with a thickness of 50mm, the thermal conductivity, the compressive strength, and flexural failure load were similar to the initial quality standard. Therefore, in the calculation of the primary energy requirement per unit area per year, the performance of bead method insulation can be estimated simply by considering the thickness of the insulation, while a correction factor that considers its performance deterioration should be applied when extrusion method insulation is used.

The Characteristics of the Set-up Effect of Driven Piles (타입 말뚝의 지지력 증가효과 특성)

  • 조천환
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.235-246
    • /
    • 2003
  • Since the study of Lee et al.(1994) there have been some case studies on the set-up effect of driven piles in Korea country. However, comprehensive examination on the analyses of the set-up effect with various testing data has not been carried out. In particular, the analysis of the influence of soil type and pile shape on the set-up effect has not been reported. It is necessary to analyse the test results of production piles in order to apply the set-up effect of driven piles for the field engineering. In this study some test piling and analyses were performed to give basic information to the piling design as well as the research on the set-up effect in sandy soils. The analyses on the set-up effect were performed with the monitoring data obtained from the high-strain dynamic loading tests. It was shown that the set-up effect of driven piles was not only affected by soil type but also by soil formation history It turned out that the set-up effect in sandy soils was considerable one that should not be ignored in the field, and that the bearing capacity increase of pile is mainly caused by the increase of shaft resistance. It was shown that the set-up effect of closed pile was larger than that of opened pile in clayey soils, while the set-up effect of opened pile was larger than that of closed pile in sandy soils.