• 제목/요약/키워드: Load Transfer Switching

검색결과 56건 처리시간 0.029초

배전망 복구지원 전문가 시스템에 관한 연구 (An Expert System for the Restoration of Distribution Networks)

  • 이흥재;이경섭;박성민
    • 조명전기설비학회논문지
    • /
    • 제17권3호
    • /
    • pp.87-94
    • /
    • 2003
  • 배전계통에서의 사고 발생시 정전으로 인한 수용가의 손실을 최소로 하기 위하여 정전구역에 대한 신속한 복구가 이루어져야 한다. 본 논문에서는 배전계통의 정전복구를 위한 전문가 시스템을 제안하였다. 제안된 전문가 시스템은 복구과정에서 전문가의 경험적 규칙을 이용함으로써 복구에 소요되는 스위칭 횟수를 최소화 하도록 하였다. 복구 과정은 일반적인 위상구조 지식 기반의 응용을 통해 전문가 시스템의 상태공간에서 타당한 경로를 찾는 문제로 표현하였다. 또한, 다양한 배전계통 구조를 고려하기 위해 다중 부하절체 기법을 제안하였다.

Practical Bifurcation Criteria considering Inductive Power Pad Losses in Wireless Power Transfer Systems

  • Kim, Minkook;Lee, Jae-Woo;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, the bifurcation criteria for inductive power transfer (IPT) systems is suggested considering the inductive power pad losses. The bifurcation criteria for series-series (SS) and series-parallel (SP) topologies are derived in terms of the main parameters of the IPT system. For deriving precise criteria, power pad resistance is obtained by copper loss calculation and core loss analysis. Utilizing the suggested criteria, possibility of bifurcation occurrence can be predicted in the design process. In order to verify the proposed criteria, 50 W IPT laboratory prototype is fabricated and the feasibilities of the switching frequency and AC load resistance shift to escape from bifurcation are identified.

첨두부하 저감을 위한 비상발전기 연계형 STS 운영 방안에 관한 연구 (A Study on Operation Scheme of STS with Emergency Generator for Peak Shedding)

  • 김창환;이상봉;김규호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.155-156
    • /
    • 2015
  • Recently, electricity consumption has rapidly increased along with economic growth. The operating strategy using emergency generator is aimed, to resolve a demand response management. For strategy of peak shedding using emergency generator, it is essential to introduce the fast transfer switching device. One of the most effective solutions is to use a static transfer switch (STS) based on thyristor. However, the characteristic of natural commutated SCR thyristor should anticipate short duration voltage sag. STS system thus requires more than a quarter cycle to successfully complete transfer process. This paper proposes the operation scheme of the STS system using the forced-commutation technique to mitigate instantaneous voltage sag during peak transfer process. Proposed STS system improved turn-off characteristic thus accomplishes the peak load shedding satisfied power quality. Performance of the proposed STS system is evaluated using electromagnetic transient program (EMTP) to confirm the effectiveness.

  • PDF

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.

배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구 (Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.

국내 4개 중유발전소 실증실험을 통한 발전연료 대체용 바이오중유의 연소특성 연구 (The Four Power Plants Field Demonstration Research on Combustion Characteristic of the Bio Oil for Fuel Switching)

  • 백세현;김현희;박호영;김영주;김태형;고성호
    • 한국연소학회지
    • /
    • 제20권1호
    • /
    • pp.15-23
    • /
    • 2015
  • This paper presents the results of field demonstration for fuel switching to bio-fuel oil in 4 commercial heavy oil fired power plants. The 100% fuel switching field demonstration was successfully carried out in two tangential-firing boilers at a capacity of 75 and 100 MWe respectively without major equipment retrofit, and also 25% bio-fuel oil blending for two opposite firing boilers at a capacity of 350 and 400 MWe respectively. Despite the low density and heating value, the bio fuel was successfully replaced heavy fuel oil at the full load by only adjusting operational parameters. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. In pollutants emission, a major reductionin SOx as well as 10-20% reduction in NOx were achieved by the fuels witching. On the other hand, boiler efficiency was slightly underestimated.

배전계통에서 유전적 알고리즘을 이용한 접속변경순서결정방법 (A Re-Configuration Genetic Algorithm for Distribution Systems)

  • 최대섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.62-63
    • /
    • 2005
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult to solve, Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration, and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

배전계통에서 유전적 알고리즘을 이용한 접속변경순서 결정방법 (A Re-Configuration Genetic Algorithm for Distribution Systems)

  • 최대섭
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.381-383
    • /
    • 2004
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult to solve. Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration, and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

배전계통에서 유전적 알고리즘을 이용한 접속변경순서결정방법 (A Re-Configuration Genetic Algorithm for Distribution Systems)

  • 최대섭
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.418-420
    • /
    • 2005
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult In solve. Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

서비스 로봇용 가변강성 형 안전관절의 설계 (Design of a Variable-Stiffness Type Safety Joint for Service Robots)

  • 정재진;장승환
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.