• Title/Summary/Keyword: Load Stress Testing

Search Result 208, Processing Time 0.029 seconds

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

Nondestructive Evaluation of Fatigue Damage (피로손상과 비파괴평가)

  • Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • In order to determine the mode I stress intensity factor ($K_I$) by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a paramagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effects of the magnetic flux and the demagnetization on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. The change in potential drop was linearly decreased with increasing the tensile load and was caused by the change in conductivity near the crack tip. The reason of decreasing the change in potential drop with increasing the tensile load was that the increase of the conductivity near the crack tip due to the tensile load caused the decreases of the resistance and internal inductance of the specimen. The relationship between the change in potential drop and the change in $K_I$ was not affected by demagnetization and was independent of the crack length.

  • PDF

Loading Effect on ACPD of a Crack in Paramagnetic Material (균열을 가진 상자성체의 교류전위차에 미치는 하중의 영향)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In order to determine the mode I stress intensity factor ($K_I$) by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a paramagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effects of the magnetic flux and the demagnetization on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. The change in potential drop was linearly decreased with increasing the tensile load and was caused by the change in conductivity near the crack tip. The reason of decreasing the change in potential drop with increasing the tensile load was that the increase of the conductivity near the crack tip due to the tensile load caused the decreases of the resistance and internal inductance of the specimen The relationship between the change in potential drop and the change in $K_I$ was not affected by demagnetization and was independent of the crack length.

  • PDF

Field testing and numerical modeling of a low-fill box culvert under a flexible pavement subjected to traffic loading

  • Acharya, Raju;Han, Jie;Parsons, Robert L.;Brennan, James J.
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.625-638
    • /
    • 2016
  • This paper presents field study and numerical modeling results for a single-cell low-fill concrete box culvert under a flexible pavement subjected to traffic loading. The culvert in the field test was instrumented with displacement transducers to capture the deformations resulting from different combinations of static and traffic loads. A low-boy truck with a known axle configuration and loads was used to apply seven static load combinations and traffic loads at different speeds. Deflections under the culvert roof were measured during loading. Soil and pavement samples were obtained by drilling operation on the test site. The properties of the soil and pavement layers were determined in the laboratory. A 3-D numerical model of the culvert was developed using a finite difference program FLAC3D. Linear elastic models were used for the pavement layers and soil. The numerical results with the material properties determined in the laboratory were compared with the field test results. The observed deflections in the field test were generally smaller under moving loads than static loads. The maximum deflections measured during the static and traffic loads were 0.6 mm and 0.41 mm respectively. The deflections computed by the numerical method were in good agreement with those observed in the field test. The deflection profiles obtained from the field test and the numerical simulation suggest that the traffic load acted more like a concentrated load distributed over a limited area on the culvert. Elastic models for culverts, pavement layers, and surrounding soil are appropriate for numerical modeling of box culverts under loading for load rating purposes.

Effect of Stress Ratio and Anisotropy on Fatigue Crack Propagation Behavior of AZ31B Magnesium Alloy (AZ31B 마그네슘합금의 피로균열성장에 미치는 응력비 및 이방성의 영향)

  • Kim, K.S.;Kim, M.K.;Kim, H.K.;Kim, C.O.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • This study was to investigate the effects of stress ratio and anisotropy on Fatigue Crack Propagation(FCP) behavior of rolled magnesium alloy AZ31B. The experimental materials were a Mg-Al-Zn magnesium alloy. The FCP test was conducted on compact tension specimen by a servo-hydraulic fatigue testing machine in air at room temperature. Compact tension specimens were prepared from the extruded parallel and vertical rolling direction. The test condition was frequency of 10Hz and sinusoidal load stress ratios are 0.1 and 0.7. The FCP rates was automatically measured by a compliance method. In the case of the FCP of AZ31B, the FCP of both direction of LT and TL by anisotropy of specimens are almost same value. In lower stress ratio, the FCP of the LT, TL specimens are increased in lower ${\Delta}K$ region but higher ${\Delta}K$ regions are almost same value. Finally, the result of observed the surface crack, it expressed the quasi-cleavage fracture in lower ${\Delta}K$ region and straight mark on the aspect of the facet in high ${\Delta}K$ region.

OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity

  • Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.987-995
    • /
    • 2018
  • In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.

Comparison between fiber-reinforced polymers and stainless steel orthodontic retainers

  • Lucchese, Alessandra;Manuelli, Maurizio;Ciuffreda, Claudio;Albertini, Paolo;Gherlone, Enrico;Perillo, Letizia
    • The korean journal of orthodontics
    • /
    • v.48 no.2
    • /
    • pp.107-112
    • /
    • 2018
  • Objective: The aim of this study was to examine the properties of fiber-reinforced composite and stainless steel twisted retainers for orthodontic retention. Methods: Three different span lengths (5.0, 8.0, and 14.0 mm) of fiber-reinforced composite were investigated. The three fiber-reinforced composite retainer groups were subdivided according to the storage condition (dry and wet), resulting in a total of six groups. Each stainless steel and fiber-reinforced composite group was comprised of six specimens. The three-point bending flexural test was conducted using a universal testing machine. ANOVA was used to assess differences in the maximum load and maximum stress according to the span length, material, and storage condition. Post-hoc comparisons were performed if necessary. Results: The maximum stress and maximum load were significantly (p < 0.001) associated with the span length, material, and storage condition. The significant interaction between the material and span length (p < 0.001) indicated the differential effects of the material for each span length on the maximum stress and maximum load, with the difference between materials being the highest for the maximum span length. Conclusions: Our findings suggest that fiber-reinforced composite retainers may be an effective alternative for orthodontic retention in patients with esthetic concerns or allergy to conventional stainless steel wires.

Evaluation of SCC Susceptibility of Weld HAZ in Structural Steel(I) -material properties and strain rate- (강용접부의 응력부식크랙감수성 평가에 관한 연구 I -재료특성과 변형률 속도-)

  • 임재규;정대식;정세희
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.48-60
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environments has been attributed to stress corrosion cracking(SCC)which is resulting from the combined effects of corrosive environments and static tensile stress. Slow strain rate test (SSRT) provides a rapid reliable method to determine SCC susceptibility of metals and alloys for a broad range of application. The chief advantage of SSRT procedures is that it is much more aggressive in producing SCC than conventional constant strain or constant load tests, so that the testing time is considerably reduced. Therefore, in this paper, the combined effects of material properties and strain rate on the tensile ductility and fracture morphology of parents and weldment for SM45C, SCM440 and SM20C steels were examined and discussed in synthetic sea water. The susceptibility of SCC was the most severe under the strain rate of $1.0{\times}10^{-6} sec^{-1}$, and R.O.A. can be used for parent and maximum load for weldment to evaluate the parameter for SCC susceptibility.

  • PDF

Fracture Strength Analysis of Monolithic Zirconia Ceramic by Abutment Shape (지르코니아 단일구조 전부도재관의 지대치 형태에 따른 파절 강도)

  • Kim, Won-Young;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.231-237
    • /
    • 2014
  • Purpose: This study was performed fracture strength test by conducted change of abutment and coping shape for suggesting monolithic all ceramic crown which has thin thickness and superior strength of the occlusal surface. Methods: The specimens on the four kinds abutment was made according to thickness of occlusal surface and angle of axis surface. And All ceramic coping specimens of 6 different kinds was made by the CAD/CAM Method. Compression strength test using the UTM and the verification of compression-stress situation using the 3D finite element method were conducted under optimum conditions. Results: 516C specimen was showed the strongest compression-fracture strength, followed by 516FR, 516F45, specimens. Did not show significant differences between 516FR and 516F45. 516C of the universal testing machine the specimen's surface that are within the vertical load is small, finite element method of a uniformly distributed load, so the value received suggests otherwise. Conclusion: In conclusion, abutments of monolithic ziconia ceramic when having a same thickness of the occlusal, as the angle of occlusal edge is small, the stress is well dispersed and it can endure well in the fracture.