• Title/Summary/Keyword: Load Smoothing

Search Result 63, Processing Time 0.026 seconds

A Study on the Inverter performance by Simulated Converter (시뮬레이터 컨버터에 의한 인버터 성능시험에 관한 연구)

  • Jho, J.M.;Jho, J.H.;Kim, S.N.;Lee, S.H.;Oh, S.H.;Lee, H.G.;Kim, Y.J.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.983-985
    • /
    • 2002
  • This paper is the machine that is able to estimate a new built power convertor in a production line. Generally, this machine test can be achieved by connecting it to a dynamometer consisting of a three-phase machine joined by a rigid shaft to a DC load machine. But the proposal system is controlled to create some specific load characteristic needed for the test without any mechanical equipment. The suggested test stand consists only of a converter to be test and a simulator converter. Both devices are connected back-to-back on the AC-side via smoothing reactors. The simulator operates in real-time as an equivalent load circuit, so that the device under test will only notice the behaviour of a three-phase machine under consideration of the load. And then, to obtain a superior characteristic for dynamic reference used the feedforward control.

  • PDF

A Study on the Inverter performance test by Simulated Converter (시뮬레이터 컨버터에 의한 인버터 성능시험에 관한 연구)

  • Jho J.M.;Harm N.Y.;Kim D.G.;Lee S.J.;Kim S.N.;Lee H.G.;Han K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.765-768
    • /
    • 2003
  • In the end of a production line a new built power converter has to undergo a series of stress tests. This can be achieved by connecting it to a dynamometer consisting of a three-phase machine joined by a rigid shaft to a DC load machine. The latter is controlled to create some specific load characteristic needed for the test. In this paper a test method is proposed, in which no mechanical equipment is needed. The suggested test stand consists only of a converter to be tested and a simulator converter. Both devices are connected back-to-back on the AC-side via smoothing reactors. The simulator operates in real-time as an equivalent load circuit, so that the device under test will only notice the behaviour of a three-phase machine under consideration of the load.

  • PDF

Rapid response control A Utility Interactive Photovoltaic Generation System (계통연계형 태양광발전 시스템의 속응성 제어)

  • Chung, Choon-Byeong;Jeon, Kee-Young;Lee, Sang-Hyun;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.279-285
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

A Study on Utility Interactive Energy System using PWM Converter (PWM 컨버터를 이용한 계통연계 에너지시스템에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Hong, Yong-Ki;Kim, Dea-Gyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.288-291
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Method of Demand Forecasting for Demand Controller (최대수요전력 관리 장치의 최대수요전력 예측 방법에 관한 연구)

  • Kwon, Yong-Hun;Kim, Ho-Jin;Kong, In-Yeup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.833-836
    • /
    • 2012
  • Demand Controller is a load control device that monitor the current power consumption and calculate the forecast power to not exceed the power set by consumer. Accurate demand forecasting is important because of controlling the load use the way that sound a warning and then blocking the load when if forecasted demand exceed the power set by consumer. When if consumer with fluctuating power consumption use the existing forecasting method, management of demand control has the disadvantage of not stable. In this paper, examine the existing forecasting method and the exponential smoothing method, and then propose the forecasting method using Kalman Filter algorithm.

  • PDF

A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand (수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구)

  • Ko, Jong-Min;Yang, Il-Kwon;Song, Jae-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

A Study of Power Conversion System for Energy Harvester Using a Piezoelectric Materials (압전소자를 이용한 에너지 하베스터용 전력변환장치 연구)

  • An, Hyunsung;Kim, Young-Cheol;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1059-1065
    • /
    • 2017
  • In this paper, the energy harvester with a piezoelectric materials is modeled as the electric equivalent circuit, and performances of a standard DC method and a Parallel-SSHI method are verified through experiment under variable force and load conditions. Piezoelectric generator consists of mass, damper and spring constant, and it is modeled by electrical equivalent circuit with RLC components. Standard DC and Parallel-SSHI are used as power conversion methods, and standard DC consists of full-bridge rectifier and smoothing capacitor. Parallel-SSHI method is composed of L-C resonant circuit, zero-crossing detector and full-bridge rectifier. In case of simulation under $100k{\Omega}$ load condition, the harvested power is $500{\mu}W$ in Standard DC and $670{\mu}W$ in Parallel-SSHI, respectively. In experiment, the harvested power under $100k{\Omega}$ load condition is $420{\mu}W$ in standard DC and $602{\mu}W$ in Parallel-SSHI. Harvested power of Parallel-SSHI is improved by approximately 40% more than that of standard DC method.

Short-Term Forecasting of Monthly Maximum Electric Power Loads Using a Winters' Multiplicative Seasonal Model (Winters' Multiplicative Seasonal Model에 의한 월 최대 전력부하의 단기예측)

  • Yang, Moonhee;Lim, Sanggyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.63-75
    • /
    • 2002
  • To improve the efficiency of the electric power generation, monthly maximum electric power consumptions for a next one year should be forecasted in advance and used as the fundamental input to the yearly electric power-generating master plan, which has a greatly influence upon relevant sub-plans successively. In this paper, we analyze the past 22-year hourly maximum electric load data available from KEPCO(Korea Electric Power Corporation) and select necessary data from the raw data for our model in order to reflect more recent trends and seasonal components, which hopefully result in a better forecasting model in terms of forecasted errors. After analyzing the selected data, we recommend to KEPCO the Winters' multiplicative model with decomposition and exponential smoothing technique among many candidate forecasting models and provide forecasts for the electric power consumptions and their 95% confidence intervals up to December of 1999. It turns out that the relative errors of our forecasts over the twelve actual load data are ranged between 0.1% and 6.6% and that the average relative error is only 3.3%. These results indicate that our model, which was accepted as the first statistical forecasting model for monthly maximum power consumption, is very suitable to KEPCO.

A Utility Interactive Photovoltaic Generation System using PWM Converter (PWM 컨버터를 이용한 계통연계형 태양광발전 시스템)

  • Kim D. G.;Chung J. H.;Chung C. B.;Kim S. N.;Lee S. H.;Kang S. W.;Oh B. H.;Lee H. G.;Kim Y. J.;Han K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.133-136
    • /
    • 2004
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

A Study of Two Phase Chopper System with Four Separate Groups of DC Motors in Powering (타동용 4 분제 2상쵸퍼방식의 특성)

  • 정연택;한경희;김용주;이영일;오봉환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.171-178
    • /
    • 1987
  • A study of two phase chopper system with four separate groups of DC motors in powering. A novel two phase chopper system with four separate groups of DC motors which applies the principles of two phase chopper with two separate groups of DC motors is dealt with this article. The main circuit consists of eight sets of chopping parts, four diodes and four separate groups of DC motors. Four groups of DC motors are driven through the series and parallel connections to each other in accordance with the operating conditions of the choppers. Although the proposed chopper circuit requires more circuit elements than the conventional two phase chopper system with combined output or two phase chopper system with two separate groups of DC motors, it has the following advantages` (1). It is possible to drive twice as much motors as conventional system does, using esisting receiving-and equipments and motors. (2). It is possible to control load voltage continuously from 0 to source voltage by changing time-ratio from 0 to 1. (3). Load current division becomes equalized. Therefore it is possible to drive not only series motors but also shunt and separately exited motors. (4). When smoothing reactor L is small, harmonic components of the proposed circuit is not so large. Therefore, the value of L can be determined from viewpoints of allowable value of ripple-ratio and current unbalance factor.