• Title/Summary/Keyword: Load Sensing Hydraulic System

Search Result 9, Processing Time 0.029 seconds

Properties of the Load-Sensing Hydraulic System from a Viewpoint of Control (제어관점에서의 부하감지형 유압시스템의 특성)

  • 김성동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.738-750
    • /
    • 1994
  • The load-sensing hydraulic system which was developed to improve energy efficiency of conventional hydraulic systems has its own properties. The instability of system responses, linearity of a servo valve, robustness for variation of external load, and dynamic interference between hydraulic motors are such properties which have much to do with control properties of the system. The load-sensing hydraulic system has instability tendancy because the load-sensing mechanism makes a positive feedback loop between the motor part and the pump part. A flow property of the servo valve can be said to be linear because the flow through the valve has nothing to do with a load pressure and the flow is strictly proportional to a valve opening which is adjusted by a valve command signal. The resultant control property can be said to be robust because the steady-state control performance is independent to the load actuated on the motor shaft. In the case when one pump simultaneously drives more than two hydraulic motors, the pump outlet pressure is determined by a hydraulic motor of the largest load pressure among all of the hydraulic motors, and, thus, the other motors are dominated by the largest load pressure. That is, the other motors can be said to be interfered by the motor of the largest load pressure.

A Simulation on the Hydraulic Control Characteristics of Excavator Using Load Sensing System (부하감지시스템을 사용한 굴삭기의 유압제어특성 시뮬레이션)

  • 조승호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.134-145
    • /
    • 1998
  • The purpose of this paper is to construct a computer simulation system which can analyze and design the hydraulic excavator Theoretical analyses are performed on the hydraulic circuit and attachment of excavator with load sensing system. Databases are constructed for control valve opening areas, horsepower control and for load sensing regulator. For hydraulic components modularized programming techniques are applied which is expected to be utilized for software development of fluid power system. Through simulation an information of any point in hydraulic circuit can be obtained.

  • PDF

A minimum energy control of a load-sensing hydraulic servo system

  • Kim, S.D.;Cho, H.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.747-752
    • /
    • 1987
  • The dynamic characteristics of a load-sensing hydraulic servo system are complex and highly unstable. Another property of the system is that the setting value of pump compensator is closely related to energy efficiency as well as control performance of the system. This necessitates the development of an effective control algorithm which guarantees good control performance, stability and energy efficiency. This paper considers a suboptimal PID control for the velocity control problem of the load-sensing hydraulic servo system. The results of simulations studies and experiments show that the proposed suboptimal controller can produce much better control performance than nonoptimal controllers and give effective energy efficiency.

  • PDF

Anti-Saturation Algorithm for a Load Sensing Hydraulic Servo System with Multiple Actuators (다중 작동기를 가진 부하감응 유압서보장치의 포화방지 알고리즘)

  • 이춘호;최필환;김철수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.977-981
    • /
    • 1996
  • A load sensing hydraulic system is widely used to military and commercial mobile applications fur its high running efficiency. Although concept and general control schemes are well known, the poor maneuverability of simultaneous multioperation of actuators still remains to be solved. In this paper, a new control algorithm is proposed to prevent the saturation of the system in such operating conditions, in which the total required flowrate of actuators may exceed the pump supply flowrate. The effectiveness of the proposed algorithm is verified through experiments.

  • PDF

Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique (PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어)

  • Yu, Sam-Hyeon;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.

A study on the efficiency improvement of electro-hydraulic pump system by load sensing (부하센싱에 의한 전기유압펌프시스템의 효율 향상에 관한 연구)

  • 황성호;강종우;박성환;하석홍;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1178-1182
    • /
    • 1993
  • Variable-displacement pumps are inherently more efficeint than fixed-displacement pumps under varying loads. Their energy-saving characteristics can be improved by the use of special control. This paper shows the improvement of the system by the use of load-sesing technique.

  • PDF

Sensing performance evaluation under various environment condition of stroke sensing cylinder using magnetic sensor (자기센서를 이용한 위치검출 실린더의 환경변화에 따른 성능평가)

  • 김성현;이민철;양순용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.636-639
    • /
    • 1996
  • We have developed a part of hydraulic stroke sensing cylinder using magnetic sensor that can detect each position under severe construction fields. In this paper, for evaluating the developed cylinder under various environment condition, thermal control systems and two hydraulic systems to be coupled consist of. The former is composed of an heater case, temperature sensor, and interface circuits which include SCR(silicon controlled rectifier) for the control of the voltage's phase. The latter is composed of an hydraulic cylinder for position control with solenoid valve (ON/OFF motion) and a load cylinder with proportional reducing valve. To obtain the various performance evaluation, it is carried out under high temperature condition in thermal system controlled by using Ziegler-Nichols PID tuning method and artificial disturbances such as impulse or constant force. The results show that the developed cylinder has good performance under the various environment condition.

  • PDF

A Study on Modeling and Simulation of Hydraulic System for a Wheel Loader using AMESim (AMESim을 이용한 휠로더 유압시스템의 모델링 및 시뮬레이션에 관한 연구)

  • Chung, Y.K.;Park, S.H.;Jeong, C.S.;Jeong, Y.M.;Yang, S.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • 본 논문은 유압해석 상용툴인 AMESim을 이용하여 로드센싱형 휠로더 유압 시스템을 모델링 하였다. 휠로더 유압장치의 주요 구성요소인 펌프, 메인 컨트롤밸브, 압력 보상기, 리모트 컨트롤밸브 및 작업 장치를 모델링 하였으며 실제 차량의 제원을 적용하여 시뮬레이션을 수행하였다. 시뮬레이션 결과와 실차 데이터를 비교 검토하여 시뮬레이션 결과와 실차 데이터가 유사함을 알 수 있었다.

  • PDF

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.