• 제목/요약/키워드: Load Reducing

Search Result 1,082, Processing Time 0.027 seconds

Gross Chemical Analysis for Honey and Pollen Load (봉밀(蜂蜜) 및 화분하(花粉荷)의 순도시험(純度試驗)과 성분조사(成分調査))

  • Suk, Kuy-Duk;Kim, Mi-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.14 no.4
    • /
    • pp.197-200
    • /
    • 1983
  • This study is concerned with quality and analysis of nutritive value of commercially available honey and pollen load. Of thirteen kind of commercially available honeys, acid levels were less than KP IV standard. Color reaction for ammonia, resorcine and varium chloride was negative and trace of starch and dextrine was not detected. There were no extraneous materials in honey samples. Specific gravity of sample was slightly higher than KP IV standard. Total ash lied between 0.01 and 0.15% of honey weight which was less than KP IV standard, except 0.56% of Castanea Honey. Studies on mineral compositions (AAS) for honeys and pollen loads showed that $Na^+,\;K^+,\;Ca^{2+},\;Fe^{2+}\;Cu^{2+}\;and\;CO^{2+}$ were the most commonly occuring minerals. Pollen loads showed higher levels of mineral contents than honeys. Castanea Honey revealed rich in minerals. $Cd^{2+}\;and\;Pb^{2+}$ were found relatively higher level in Robinia Honey. Reducing sugar level showed $60{\sim}70$ in honeys and $25{\sim}30$ in pollen loads. Non reducing sugar varied between 2 to 7% in pollen loads.

  • PDF

Reducing Peak Cooling Demand Using Building Precooling and Modified Linear Rise of Indoor Space Temperature (건물예냉과 실내온도의 선형상승에 의한 피크냉방수요 저감)

  • Lee, Kyoung-Ho;Yang, Seung-Kwon;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.86-96
    • /
    • 2010
  • The paper describes development and evaluation of a simple method for determining gradient of modified linear setpoint variation to reduce peak electrical cooling demand in buildings using building precooling and setpoint adjustment. The method is an approximated approach for minimizing electrical cooling demand during occupied period in buildings and involves modified linear adjustment of cooling setpoint temperature between $26^{\circ}C$ and $28^{\circ}C$. The gradient of linear variation or final time of linear increase is determined based on the cooling load shape in conventional cooling control having a constant setpoint temperature. The potential to reduce peak cooling demand using the simple method was evaluated through building simulation for a calibrated office building model considering four different weather conditions. The simple method showed about 30% and 20% in terms of reducing peak cooling demand and chiller power consumption, respectively, compared to the conventional control.

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model (탄소성 모델에 의한 포물선 아치의 극한 내하력 평가)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

Effects of Load Center of Gravity and Feet Positions on Peak EMG Amplitude at Low Back Muscles While Lifting Heavy Materials (중량물 들기 작업시 물체 무게중심 및 발의 위치가 허리 근육의 최대 EMG 진폭에 미치는 영향)

  • Kim, Sun-Uk;Han, Seung Jo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Objectives: This study's aims were to evaluate the effects of load center of gravity within an object lifted and feet placements on peak EMG amplitude acting on bilateral low back muscle groups, and to suggest adequate foot strategies with an aim to reducing low back pain incidence while lifting asymmetric load. Methods: The hypotheses that asymmetric load imposes more peak EMG amplitude on low back muscles contralateral to load center of gravity than symmetric load and maximum peak EMG amplitude out of bilateral ones can be relieved by locating one foot close to load center of gravity in front of the other were established based on biomechanics including safety margin model and previous researches. 11 male subjects were required to lift symmetrically a 15.8kg object during 2sec according to each conditions; symmetric load-parallel feet (SP), asymmetric load-parallel feet (AP), asymmetric load-one foot contralateral to load center of gravity in front of the other (AL), and asymmetric load-one foot ipsilateral to load center of gravity in front of the other (AR). Bilateral longissimus, iliocostalis, and multifidus on right and left low back area were selected as target muscles, and asymmetric load had load center of gravity 10cm deviated to the right from the center in the frontal plane. Results: Greater peak EMG amplitude in left muscle group than in right one was observed due to the effect of load center of gravity, and mean peak EMG amplitudes on both sides was not affected by load center of gravity because of EMG balancing effect. However, the difference of peak EMG amplitudes between both sides was significantly affected by it. Maximum peak EMG amplitude out of both sides and the difference of peak EMG amplitude between both sides could be reduced with keeping one foot ipsilateral to load center of gravity in front of the other while lifting asymmetric load. Conclusions: It was likely that asymmetric load lead to the elevated incidence of low back pain in comparison with symmetric load based on maximum peak EMG amplitude occurrence and greater imbalanced peak EMG amplitude between both sides. Changing feet positions according to the location of load center of gravity was suggested as one intervention able to reduce the low back pain incidence.

A Study on Engineering Characteristics of Load Reducing Material EPS (도로성토하중경감재 EPS의 공학적 특성에 관한 연구)

  • Jang, Myeong-Sun;Cheon, Byeong-Sik;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-70
    • /
    • 1996
  • The EPS has the unit weight of only 20~30kg/m3 and is used as one of the methods of reducing road embankment loads. Parts of it's applications are for backfill materials of structures like abutment, retaining wall, etc., to reduce horizontal earth pressure and for banking materials to secure the safety of settlement and bearing capacity by minimizing the stress Increment. However, the Korean Standards (KS) has not yet proposed any testing method for use of EPS as a engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. Therefore, in Korea, EPS is used as banking material without any systematic testing data as a civil engineering material. In this point of view, this paper deals with the engineering characteristics of EPS through many laboratory tests on strength, strain, absorption, and creep. from the results achived through tests, this paper proposes the enactment of a suitable quality testing ordinance and the criteria of unconfined design strength of EPS for use as engineering material.

  • PDF

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.

Page Replacement Policy for Memory Load Adaption to Reduce Storage Writes and Page Faults (스토리지 쓰기량과 페이지 폴트를 줄이는 메모리 부하 적응형 페이지 교체 정책)

  • Bahn, Hyokyung;Park, Yunjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.57-62
    • /
    • 2022
  • Recently, fast storage media such as phage-change memory (PCM) emerge, and memory management policies for slow disk storage need to be revisited. In this paper, we propose a new page replacement policy that makes use of PCM as a swap device of virtual memory systems. The proposed policy aims at reducing write traffic to the swap device as well as reducing the number of page faults pursued by traditional page replacement policies. This is because a write operation in PCM is slow and PCM has limited write endurances. Specifically, the proposed policy focuses on the reduction of page faults when the memory load of the system is high, but it aims at reducing write traffic to storage when free memory space is sufficient. Simulation experiments with various memory reference traces show that the proposed policy reduces write traffic to PCM without performance degradations.

A Study of Load Tolerance Node using Load-balance in Mobile Ad hoc Networks (모바일 애드 혹 네트워크에서 로드 밸런스를 이용한 분산 노드 설정에 관한 연구)

  • Oh, Dong-Keun;Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.1001-1008
    • /
    • 2015
  • Mobile Ad hoc Network(MANET) consists of a node that has mobility. In MANET, the node has routing, the node builds a network of their own, no dependent infrastructure. Topology are exchanged due to node mobility in MANET. For reducing the change of topology, hierarchical network algorithm has been investigated. In hierarchical network, cluster member node communicates through cluster head node. When the load-balancing of cluster head node is exceed, assigned cluster member node can't communicate with base station. To solve this problem, we proposed Load Tolerance algorithm. The proposed algorithm, when cluster member node can't send a message by cluster head node that exceed load-balancing, then the cluster member node sends a message by selected load tolerance node. Through a simulation, the proposed algorithm improves packet delivery ratio in cluster routing.