• Title/Summary/Keyword: Load Reducing

Search Result 1,080, Processing Time 0.027 seconds

Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems (전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

A Study on Efficient Methods of Using Land Engine in the Small Fishing Vessel (소형 어선에서 육상용기관의 효율적인 이용방법에 대한 연구)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2005
  • A study on the performance and exhaust emissions of diesel engine with reducing exhaust gas temperature is performed experimentally. In this paper, experiments are performed at engine speed 2200rpm, 2600rpm and load 0%, 25%, 50%, 75% and 100% by test engine with F.W. cooler passing through exhaust gas. Main measured & analyzed parameters are exhaust gas temperature, specific fuel consumption, NOx and soot emissions etc. The obtained conclusions are as follows. (1) Specific fuel consumption is the least value at load 75% and it is decreased 1.5% after remodeling F.W. cooler. (2) NOx emission is the most value at load 100% and it is increased 30.1% after remodeling F.W. cooler. (3) Soot emission is the most value at load 100% and it is decreased 20.0% after remodeling F.W. cooler.

  • PDF

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads (지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

Effects of Flow Rate and Discharge Pressure with Compressing Spring in Non-diaphragm Type Stem of Water Pressure Reducing Valve (급수용 감압밸브의 비다이어프램 스템에서 압축스프링에 따른 유량 및 토출압력 효과)

  • Byeon, Jae-Uk;Kim, Chi-Ho;Park, Seong-Hwan;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.103-109
    • /
    • 2019
  • The pressure reducing valve for water is controlled by the load of the compression spring and the force of the fluid acting on the diaphragm of the stem. Repeated upward and downward reciprocation of the pressure-reducing valve stem damages the diaphragm, resulting in leakage. In this study, we designed a stem without a diaphragm and adjusted the stiffness of the compressing spring. In order to select the spring stiffness, springs offering a stiffness of -20%, -10%, 0%, and 10% with respect to the stiffness of the compression spring attached to the existing pressure reducing valve stiffness. A prototype for the pressure reducing valve was fabricated and the pressure change was evaluated for the target static pressure (6 bar) by testing the pressure characteristics after mounting the modified stem and each compression spring. Evaluation of the pressure characteristics was carried out using ASSE 1003 and KS B 6153. In addition, the flow rates were compared by internal flow analysis of the conventional pressure reducing valve and the pressure reducing valve using the modified stems, and the flow analysis was performed using Solidworks flow simulation 2018. The spring stiffness was constantly discharged at the target static pressure of 3.793 kgf/mm, and the flow rate was increased by about 15% compared with the conventional pressure reducing valve.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Effect on Characteristics of Exhaust Emissions by Using Emulsified Fuel in Diesel Engine (디젤기관에 있어서 에멀젼연료가 배기배출물 특성에 미치는 영향)

  • Cho, Sang-Gon;Hwang, Sang-Jin;Yoo, Dong-Hoon;Lim, Jae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • Diesel engines have high thermal efficiency, and they have less CO & HC emissions than another engines. while NOx & Soot emissions are very much. compared with exhaust emission standards. However, the limit level is more and more strengthened yearly due to the importance of environmental protection. So, the optimal countermeasures for the reduction of NOx & Soot emissions below limit level are required. Therefore. the author has investigated the effects of emulsified fuel on the characteristics of exhaust emissions. using an four-cycle, four-cylinder and direct injection diesel engine because the using of emulsified fuel among various methods for reducing NOx & Soot emissions is simple in installation low in cost and high in efficiency. The results of investigation according to various operating conditions are as follows : 1) Specific fuel consumption increase maximum 19.8% at low load. but is not affected at full load. 2) In case of emulsion ratio 25%, NOx emission decrease 32% at 75% load. 30% at full load. 3) In case of emulsion ratio 25%, Soot emission decrease 84% at 75% load, 59% at full load.

A Study on the Heuristic Algorithm Development for Load Balance Ratio Increase of Workers in Warehouse (물류창고 불출자 로드밸런스율 증대 휴리스틱 알고리즘 개발)

  • Quan, Yu;Jang, Jung-Hwan;Jang, Jing-Lun;Jho, Yong-chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.203-210
    • /
    • 2017
  • Companies are pursuing the management of small quantity batch production or JIT(Just-in-time) system for improving the delivery response and LOB(Line Balancing) in order to satisfy consumers' increasing demands in the current global economic recession. And in order to improve the growth of production for reducing manufacturing cost, improvements of the Load Balancing have become an important reformation factor. Thus this paper is aimed at warehouse which procures materials on the assembly line in procurement logistics of automotive logistics and proceed with research on heuristic algorithm development which can increase the Load Balancing of workers. As a result of this study, when applied the primary target value, it was verified that the whole workers decreased from 28 to 24. Furthermore, when specified the secondary target value and applied algorithm once more, it was verified that the Load Balance Ratio was improved from 44.96% to 91.7%.

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Study on Fresh Air Load Reduction System by Using Geothermal Energy - Reducing Effect of a Fresh Air Load by Combining with Air-heated Solar Collector - (지열을 이용한 공조외기부하저감 시스템에 관한 연구 - 공기식 집열기와의 병용에 의한 공조외기부하저감 효과 -)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1218-1226
    • /
    • 2004
  • This paper presents thermal behaviors and performances of a fresh air load reduction system by using earth tube system combined with air-heated solar collector. The earth tube system reduces a fresh air load by heat exchange with soil throughout the year. In the previous experimental research, it was clarified that the earth tube system was very useful as a fresh air load reduction system. However, since outlet temperature of the fresh air which was heated by earth tube system was below 15$^{\circ}C$ in winter, it is not suitable to introduce the fresh air into the place of residence directly. Therefore, a simulation model using the simple heat diffusion equation was used to examine a rising effect of outlet air temperature in winter by combining with air-heated solar collector. An improvement of annual performance by control of operation is also quantitatively examined. In conclusion, it is confirmed that its performance is improved by control of operation throughout the year and outlet air temperature rose by combining with air-heated solar collector.