• 제목/요약/키워드: Load Position

검색결과 1,122건 처리시간 0.033초

절대위치 검출형 실린더 개발 및 외란 부하에 대한 성능평가 (Development of Absolute Position Detecting Cylinder and Evaluation under the Load Disturbance)

  • 김성현;박민규;홍영호;이민철;이만형
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.68-75
    • /
    • 2003
  • This paper introduces the development of hydraulic cylinder with magnetic sensors detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position with a little displacement by using algorithm for recognizing datum points, 114 divider algorithm and high precision algorithm improved position precision. We alse evaluate the developed system under the load disturbance and add band pass filter to the previous's signal process circuit for the protecting magnetic sensors's saturation.

Finite Element Stress Analysis according to Apical-coronal Implant Position

  • Kang, Tae-Ho;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권1호
    • /
    • pp.52-59
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the influence of apical-coronal implant position on the stress distribution after occlusal and oblique loading. Materials and Methods: The cortical and cancellous bone was assumed to be isotropic, homogeneous, and linearly elastic. The implant was apposed to cortical bone in the crestal region and to cancellous bone for the remainder of the implant-bone interface. The cancellous core was surrounded by 2-mm-thick cortical bone. An axial load of 200 N was assumed and a 200-N oblique load was applied at a buccal inclination of 30 degrees to the center of the pontic and buccal cusps. The 3-D geometry modeled in Iron CAD was interfaced with ANSYS. Results: When only the stress in the bone was compared, the minimal principal stress at load Points A and B, with a axial load applied at 90 degrees or an oblique load applied at 30 degrees, for model 5. The von Mises stress in the screw of model 5 was minimal at Points A and B, for 90- and 30-degree loads. When the von Mises stress of the abutment screw was compared at Points A and B, and a 30-degree oblique load, the maximum principal stress was seen with model 2, while the minimum principal stress was with model 5. In the case of implant, the model that received maximum von Mises stress was model 1 with the load Point A and Point B, axial load applied in 90-degree, and oblique load applied in 30-degree. Discussion and Conclusions: These results suggests that implantation should be done at the supracrestal level only when necessary, since it results in higher stress than when implantation is done at or below the alveolar bone level. Within the limited this study, we recommend the use of supracrestal apical-coronal positioning in the case of clinical indications.

Robust Adaptive Precision Position Control of PMSM

  • Ko Jong-Sun;Ko Sung-Hwan;Kim Yung-Chan
    • Journal of Power Electronics
    • /
    • 제6권4호
    • /
    • pp.347-355
    • /
    • 2006
  • A new control method for precision robust position control of a permanent magnet synchronous motor (PMSM) is presented. In direct drive motor systems, a load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in using a fixed gain to solve this problem. However, the motor flux linkage cannot be determined precisely for a load torque observer. Therefore, an asymptotically stable adaptive observer base on a deadbeat observer is considered to overcome the problems of unknown parameters, torque disturbance and a small chattering effect. To find the critical parameters the system stability analysis is carried out using the Liapunov stability theorem.

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • 제4권1호
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Matlab을 이용한 유압모터-부하계의 위치제어 (Position Control of Hydraulic Motor-Load System using Matlab)

  • 이명호;박형배
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.76-83
    • /
    • 2004
  • The purpose of this paper is to find an effective control system for a hydraulic motor-load system using matlab. The Hydraulic control system consists of a hydraulic pump, a hydraulic proportional control valve, hydraulic pipelines, a hydraulic motor and a load system. The simulation models were verified by comparing the simulation results with measured data from the real hydraulic proportional position control system. In order to compensate the nonlinear friction characteristics in a hydraulic motor-load system, a discrete time PD controller and Friction torque observer has been applied.

A Study on Load Vibration Control in Crane Operating

  • Le, Nhat-Binh;Lee, Dong-Hun;Kim, Tae-Wan;Kim, Young-Bok
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.58-60
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. This paper describes a model for studying the dynamic behavior of the offshore crane system. The obtained model allows to evaluate the fluctuations of the load arising from the elasticity of the rope. Especially, in this paper, the authors design control system in which just winch rotation angle and rope tension are used without load position information. The controller design based on input-output feedback linearization theory is presented which can handle the effect of the elasticity of the rope and track the load target trajectory input. Besides that, a full order observer is designed to estimate unknown states. Finally, By the experiment results, the effectiveness of proposed control method is evaluated and verified.

  • PDF

Application of Coefficient Diagram Method for Multivariable Control of Overhead Crane System

  • Tantaworrasilp, A.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2240-2245
    • /
    • 2003
  • In this paper, the controller design by coefficient diagram method (CDM) for controlling the trolley position, load-swing angle and hoisting rope length of the overhead crane system simultaneously is proposed. The overhead crane system is a MIMO system consisting of two inputs and three outputs. Its mathematical model is nonlinear with coupling characteristics. This nonlinear model can be approximated to obtain a linear model where the first input mainly affects the trolley position and the load-swing angle while the second input mainly affects the hoisting rope length. In order to utilize the CDM concept for assigning the controllers, namely PID, PD and PI controllers separately, the model is approximated to be three transfer functions in accordance with trolley position, the load-swing angle and the hoisting rope length controls respectively. The satisfied performances of the overhead crane system controlled by the these controllers and fast rejection of the disturbance effect occurred at the trolley position are shown by simulation and experimental results.

  • PDF

위치제어계에서 응답특성 개선을 위한 PI-PD제어기의 설계 (Design of PI-PD Controllers to Improve a Response Characteristic in Position Control System)

  • 김종혁
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.651-657
    • /
    • 2012
  • In many control fields high position performance is essentially required in reducing the over-shoot phenomena which is produced by improving the quick response in starting and in minimizing the variation of the response characteristic on disturbance and load variation In this paper, the design method for a position control is suggested for constructing the PI-PD controllers by using an internal PD feedback loop in PI and PD control system. Applying this method to the position control system used a DC servo motor as a driver, the transfer PI and PD controllers are designed simultaneously and the coefficients of these controllers are determined by using the transfer function of a plant and a proportional coefficient from mathematical technique. From the result of computer simulation in PI-PD control system by applying this control technique, we can verify the usefulness of this method in rejecting of over-shoot of starting, compensating of response variation on the load variation, and shorting the settling time.

유한요소법을 이용한 교합 하중 위치에 따른 임플란트 지지골의 응력분포 비교분석 (A Comparative Analysis of Stress Distribution in the Implant Supporting Bone by Occlusal Loading location Utilizing the Finite Element Method)

  • 이명곤;김영직;김치영
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.105-113
    • /
    • 2005
  • The purpose of this study is to evaluate the effect of loading at three different occlusal surface position of the gold alloy crown on the stress distributions in surrounding bone, utilizing 3-dimensional finite element method. A three dimensional finite element model of an implant with simplified gold alloy crown and supporting bone was developed for this study. A oblique or vertical load of 100 N was applied at the following position at each FE model : 1) center of occlusal surface, 2) a point on the buccal side away from center of occlusal surface (COS) by 2.8mm, 3) a point on the lingual side away from COS by 2.8mm. In the results, Minimum von Mises stresses under vertical load or oblique load of 100N were about 6MPa at the center of occlusal surface and about 40MPa at the point on the buccal side, respectively. From the results we could come to the conclusion that occlusive loading position could be an important factor for establishment of structural safety of supporting bone.

  • PDF

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.