• 제목/요약/키워드: Load Position

검색결과 1,127건 처리시간 0.028초

스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증 (Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load)

  • 이동섭;김인수;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

근전도 신호 분석 및 BLDC모터 제어를 통한 무릎재활시스템 (Knee Rehabilitation System through EMG Signal analysis and BLDC Motor Control)

  • 권형기;고형규;송윤오;손의성;이붕주
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.1009-1018
    • /
    • 2019
  • 본 연구에서는 표면근전도 측정기 기반의 재활의료기기의 설계 및 구현에 관한 내용을 기술한다. 재활시스템은 BLDC모터와 모터 드라이브를 이용하여 제어된다. BLDC모터 드라이브는 동작제어를 하며, 속도는 외부 서보모터를 통해 드라이브를 제어한다. 또한 모터 외부에 결합된 포텐쇼미터는 모터에 의해 회전하는 부하 위치 정보를 전달한다. 재활 알고리즘은 환자가 일정 각도 범위에서 주기적인 수축 이완 재활운동을 속도단계별로 실행하며 재활운동 시 사용자 설정 단계에 따른 모터를 활용하여 $0{\sim}120[^{\circ}]$의 최대각도로 제한하여 제어한다. 보행 알고리즘은 양쪽 안쪽넓은근에 부착된 표면근전도 측정기로 획득한 신호의 차이 값을 이용하여 근전도 신호가 낮은 다리에 모터제어로 보상해주며 보행운동 시 모터와 표면근전도 측정기를 활용하여 $0{\sim}88[^{\circ}]$의 최대각도로 제한하여 제어한다.

Spatially Distributed Model for Soil Loss Vulnerability Assessment in Mekong River Basin

  • Thuy, H.T.;Lee, Giha;Lee, Daeeop;Sophal, Try
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.188-188
    • /
    • 2016
  • The Mekong which is one of the world's most significant rivers plays an extremely important role to South East Asia. Lying across six riparian countries including China, Myanmar, Thailand, Laos, Cambodia and Vietnam and being a greatly biological and ecological diversity of fishes, the river supports a huge population who living along Mekong Basin River. Therefore, much attention has been focused on the giant Mekong Basin River, particularly, the soil erosion and sedimentation problems which rise critical impacts on irrigation, agriculture, navigation, fisheries and aquatic ecosystem. In fact, there have been many methods to calculate these problems; however, in the case of Mekong, the available data have significant limitations because of large area (about 795 00 km2) and a failure by management agencies to analyze and publish of developing countries in Mekong Basin River. As a result, the Universal Soil Loss Equation (USLE) model in a GIS (Geographic Information System) framework was applied in this study. The USLE factors contain the rainfall erosivity, soil erodibility, slope length, steepness, crop management and conservation practices which are represented by raster layers in GIS environment. In the final step, these factors were multiplied together to estimate the soil erosion rate in the study area by using spatial analyst tool in the ArcGIS 10.2 software. The spatial distribution of soil loss result will be used to support river basin management to find the subtainable management practices by showing the position and amount of soil erosion and sediment load in the dangerous areas during the selected 56- year period from 1952 to 2007.

  • PDF

쐐기형 모형선 주위 연속 쇄빙과정에 관한 입자 기반 수치 시뮬레이션 (Particle-based Numerical Simulation of Continuous Ice Breaking Process around Wedge-type Model Ship)

  • ;신우진;김동현;박종천;정성엽
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.23-34
    • /
    • 2020
  • This paper covers the development of prediction techniques for ice load on ice-breakers operating in continuous ice-breaking under level ice conditions using particle-based continuum mechanics. Ice is assumed to be a linear elastic material until the fracture occurs. The maximum normal stress theory is used for the criterion of fracture. The location of the crack can be expressed using a local scalar function consisting of the gradient of the first principal stress and the corresponding eigen-vector. This expression is used to determine the relative position of particle pair to the new crack. The Hertz contact model is introduced to consider the collisions between ice fragments and the collisions between hull and ice fragments. In order to verify the developed technique, the simulation results for the three-point bending problems of ice-specimen and the continuous ice-breaking problem around a wedge-type model ship with bow angle of 20° are compared with the experimental results carrying out at Korea Research Institute of Ships and Ocean Engineering (KRISO).

Adjacent Matrix-based Hole Coverage Discovery Technique for Sensor Networks

  • Wu, Mary
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.169-176
    • /
    • 2019
  • Wireless sensor networks are used to monitor and control areas in a variety of military and civilian areas such as battlefield surveillance, intrusion detection, disaster recovery, biological detection, and environmental monitoring. Since the sensor nodes are randomly placed in the area of interest, separation of the sensor network area may occur due to environmental obstacles or a sensor may not exist in some areas. Also, in the situation where the sensor node is placed in a non-relocatable place, some node may exhaust energy or physical hole of the sensor node may cause coverage hole. Coverage holes can affect the performance of the entire sensor network, such as reducing data reliability, changing network topologies, disconnecting data links, and degrading transmission load. It is possible to solve the problem that occurs in the coverage hole by finding a coverage hole in the sensor network and further arranging a new sensor node in the detected coverage hole. The existing coverage hole detection technique is based on the location of the sensor node, but it is inefficient to mount the GPS on the sensor node having limited resources, and performing other location information processing causes a lot of message transmission overhead. In this paper, we propose an Adjacent Matrix-based Hole Coverage Discovery(AMHCD) scheme based on connectivity of neighboring nodes. The method searches for whether the connectivity of the neighboring nodes constitutes a closed shape based on the adjacent matrix, and determines whether the node is an internal node or a boundary node. Therefore, the message overhead for the location information strokes does not occur and can be applied irrespective of the position information error.

Three-dimensional finite element analysis of buccally cantilevered implant-supported prostheses in a severely resorbed mandible

  • Alom, Ghaith;Kwon, Ho-Beom;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권1호
    • /
    • pp.12-23
    • /
    • 2021
  • Purpose. The aim of the study was to compare the lingualized implant placement creating a buccal cantilever with prosthetic-driven implant placement exhibiting excessive crown-to-implant ratio. Materials and Methods. Based on patient's CT scan data, two finite element models were created. Both models were composed of the severely resorbed posterior mandible with first premolar and second molar and missing second premolar and first molar, a two-unit prosthesis supported by two implants. The differences were in implants position and crown-to-implant ratio; lingualized implants creating lingually overcontoured prosthesis (Model CP2) and prosthetic-driven implants creating an excessive crown-to-implant ratio (Model PD2). A screw preload of 466.4 N and a buccal occlusal load of 262 N were applied. The contacts between the implant components were set to a frictional contact with a friction coefficient of 0.3. The maximum von Mises stress and strain and maximum equivalent plastic strain were analyzed and compared, as well as volumes of the materials under specified stress and strain ranges. Results. The results revealed that the highest maximum von Mises stress in each model was 1091 MPa for CP2 and 1085 MPa for PD2. In the cortical bone, CP2 showed a lower peak stress and a similar peak strain. Besides, volume calculation confirmed that CP2 presented lower volumes undergoing stress and strain. The stresses in implant components were slightly lower in value in PD2. However, CP2 exhibited a noticeably higher plastic strain. CONCLUSION. Prosthetic-driven implant placement might biomechanically be more advantageous than bone quantity-based implant placement that creates a buccal cantilever.

3D 메쉬 구조에서 무게 균형을 위한 최적 알고리즘 (An Optimal Algorithm for Weight Balancing in a 3D Mesh Architecture)

  • 소선섭;손경아;은성배
    • 한국정보통신학회논문지
    • /
    • 제24권8호
    • /
    • pp.1095-1101
    • /
    • 2020
  • 선박이나 항공기의 안정성 유지를 위하여 컨테이너나 화물의 무게 균형을 유지하도록 적재해야 한다. 컨테이너의 적재 알고리즘은 NP 문제로 알려져 있으며 몇 가지 휴리스틱 방법이 연구되었다. 선박이나 비행기에 보관할 컨테이너는 부피와 무게가 균일하다는 특징이 있는데 이를 이용하면 좀 더 쉬운 적재 방법을 찾을 수 있다. 본 논문에서는 물체의 부피와 무게가 균일할 때 무게 균형을 위한 알고리즘을 제안한다. 적재 공간은 m * n 메쉬의 특수한 구조라고 가정한다 (이때, m과 n은 모두 홀수이다). 이 경우, 본 논문에서는 Greedy 알고리즘을 제안하였고 물체의 개수가 몇 개이든 언제나 무게 균형을 유지하는 적재 장소를 찾을 수 있다는 점에서 그 알고리즘이 최적임을 증명하였다. 제안된 알고리즘은 적재 알고리즘 및 부하 균형 문제와 같은 여러 공학 문제에서 활용될 수 있다.

슬링을 이용한 교각운동 시 장력센서와 경사계를 이용한 시각적 피드백이 근활성도에 미치는 영향 (Effects of the Symmetry of Muscle Activity by Application of Visual Feedback using Tension Sensor and Inclinometer during Bridge Exercise with Sling)

  • 권유정;송민영
    • 대한통합의학회지
    • /
    • 제9권1호
    • /
    • pp.133-140
    • /
    • 2021
  • Purpose: This study aimed to compare the relative muscle activity on the erector spinae, gluteus maximus, and hamstring, using a non-visual feedback bridge exercise and a visual feedback bridge exercise with a tension sensor and clinometer. Methods: Twenty-two healthy subjects participated in this study. The study subjects performed bridge exercises without visual feedback, bridge exercises using a tension sensor, and bridge exercises using an inclinometer in the supine position, and the muscle activity of the left and right erector spinae, gluteus maximus, and hamstring muscles was measured while maintaining isometric contraction during the bridge movement. Muscle activity was measured by using surface an electromyography equipment. To standardize the measured action potential of each muscle, the maximum voluntary isometric contraction was measured. The bridge exercise was repeated 3 times for 5s each. Using repeated analysis of variance, we compared the significant difference in EMG activity for each muscle between the three experiments, and all statistical processing was performed using SPSS version 26. The statistical significance level was set at α = 0.05. Results: During bridging exercises, the asymmetry of the muscle activity of the erector spinae and gluteus maximus during visual feedback guiding was lower than that during no visual feedback. However, there was no significant difference. Moreover, the asymmetry of the muscle activity of the hamstring muscles was significantly lower during tension sensor visual feedback than that during no visual feedback (p<0.05). Conclusion: These findings suggest that bridge exercise with visual feedback using a tension sensor and an inclinometer is effective in inducing symmetrical movement. When it is necessary to symmetrically adjust the weight load of both feet during the bridge exercise, it is effective to apply visual feedback using a tension sensor.

Effect of slope with overburden layer on the bearing behavior of large-diameter rock-socketed piles

  • Xing, Haofeng;Zhang, Hao;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.389-397
    • /
    • 2021
  • Pile foundation is a typical form of bridge foundation and viaduct, and large-diameter rock-socketed piles are typically adopted in bridges with long span or high piers. To investigate the effect of a mountain slope with a deep overburden layer on the bearing characteristics of large-diameter rock-socketed piles, four centrifuge model tests of single piles on different slopes (0°, 15°, 30° and 45°) were carried out to investigate the effect of slope on the bearing characteristics of piles. In addition, three pile group tests with different slope (0°, 30° and 45°) were also performed to explore the effect of slope on the bearing characteristics of the pile group. The results of the single pile tests indicate that the slope with a deep overburden layer not only accelerates the drag force of the pile with the increasing slope, but also causes the bending moment to move down owing to the increase in the unsymmetrical pressure around the pile. As the slope increases from 0° to 45°, the drag force of the pile is significantly enlarged and the axial force of the pile reduces to beyond 12%. The position of the maximum bending moment of the pile shifts downward, while the magnitude becomes larger. Meanwhile, the slope results in the reduction in the shaft resistance of the pile, and the maximum value at the front side of the pile is 3.98% less than at its rear side at a 45° slope. The load-sharing ratio of the tip resistance of the pile is increased from 5.49% to 12.02%. The results of the pile group tests show that the increase in the slope enhances the uneven distribution of the pile top reaction and yields a larger bending moment and different settlements on the pile cap, which might cause safety issues to bridge structures.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.