• Title/Summary/Keyword: Load Position

Search Result 1,122, Processing Time 0.023 seconds

Novel Position Controller for PMSM Based on State Feedback and Load Torque Feed-Forward

  • Zheng, Zedong;Li, Yongdong;Fadel, Maurice
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • In this paper, a novel position controller based on state feedback and feed-forward is proposed. Traditional position and speed controllers are replaced by a single controller with the position and speed as state feedbacks, and the position command and load torque as feed-forwards. The feedback and feed-forward gains are obtained by analytic modeling and design. The load torque, rotor speed and position are estimated by an observer based on a Kalman filter (KF) with a low resolution mechanical position sensor. Feed-forward compensation by an estimated load torque is used to improve the dynamic performance during load torque changes.

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing and Load Distribution of a Planet Gear (캐리어의 핀홀 위치 오차에 따른 유성기어의 하중 분할 및 하중 분포 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Young-Joo;Oh, Joo-Young;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.66-72
    • /
    • 2016
  • Gearboxes are mechanical components that transmit power by adjusting input and output speed and torque. Their design requirements include small size, light weight, and long lifespan. We have investigated the effects of carrier pinhole position error on the load sharing and load distribution characteristics of a planetary gear set with four planet gears. The simulation model for a simple planetary gear set was developed and verified by comparing analytical results with a putative model. Then, we derived the load sharing and load distribution characteristics under various pinhole position error conditions using the prototypical simulation model. The results showed that the mesh load factor and face load factor increased with the pinhole position error, which then influenced the safety factor for tooth bending strength and surface durability.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing of Planetary Gear (캐리어의 핀홀 위치 오차가 유성기어의 하중 분할에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.67-72
    • /
    • 2016
  • Planetary gear sets are widely used in power transmission components, which have high efficiency and good durability. Their most important design parameter is the load-sharing characteristics among several planetary gears. In this study, the load sharing of planetary gears was analyzed according to the carrier pinhole position error of planetary gear sets. The loads acting on planetary gears varied with the pinhole position error of the carrier, and the load sharing of planetary gears improved as the input load increased. In addition, the load of the planetary gear with a carrier pinhole position error was relatively higher than that of other planetary gears without carrier pinhole position errors. This trend appeared more clearly in the non-floating-type carrier than the floating-type carrier.

Precise Position Synchronous Control of Four-Axes System Based on Acceleration Control (가속도제어에 의한 4축 시스템의 정밀 위치동기제어)

  • Jeong, Seok-Kwon;Choi, Bong-Seok;You, Sam-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1245-1254
    • /
    • 2004
  • In this paper, we deal with a precise position synchronous control of four-axes system which is working under various load disturbances. Each axis driving system is consisted of a speed controller and an acceleration controller as an inner loop instead of conventional current control scheme. The acceleration control plays an important roll to suppress load disturbances quickly. Also, each axis is coupled by a maximum position synchronous error comparison to minimize position synchronous errors according to integration of speed differency. As a result, the proposed system enables precise synchronous control with good robustness against load disturbances during transient as well as steady state. The stability and robustness of the proposed system are investigated through its frequency characteristic and numerical simulations. Finally, experimental results under load disturbances demonstrate the effectiveness of the proposed control system fur four-axes position synchronous control.

Characteristic Analysis of Planetary Gear Set of Hydromechanical Transmission System of Agricultural Tractors

  • Park, Young-Jun;Kim, Jeong-Gil;Lee, Geun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.145-152
    • /
    • 2016
  • Purpose: This study aims to establish the effect of pinhole position errors in the planet carrier of a planetary gear set (PGS) on load sharing among the planet gears in the hydromechanical transmission (HMT) system of an agricultural tractor. Methods: A simulation model of a PGS with five planet gears was developed to analyze load sharing among the planet gears. The simulation model was verified by comparing i ts r esults w ith those of a model developed in a previous s tudy. The verified simulation model was used to analyze the load-sharing characteristics of the planet gears with respect to the pinhole position error and the input torque to the PGS. Results: Both simulation models had identical load magnitude sequences for the five planet gears. However, the load magnitudes on the corresponding planet gears differed between the models because of the different stiffnesses of the PGS components and the input torques to the PGS. The verified simulation model demonstrated that the evenness of load sharing among the planet gears increases with decreasing pinhole position error and increasing input torque. Conclusions: The geometrical tolerance of the pinhole position should be properly considered during the design of the planet carrier to improve the service life of the PGS and load sharing among the planet gears.

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

Sensorless Detection of Position and Speed in Brushless DC Motors using the Derivative of Terminal Phase Voltages Technique with a Simple and Versatile Motor Driver Implementation

  • Carlos Gamazo Real, Jose;Jaime Gomez, Gil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1540-1551
    • /
    • 2015
  • The detection of position and speed in BLDC motors without using position sensors has meant many efforts for the last decades. The aim of this paper is to develop a sensorless technique for detecting the position and speed of BLDC motors, and to overcome the drawbacks of position sensor-based methods by improving the performance of traditional approaches oriented to motor phase voltage sensing. The position and speed information is obtained by computing the derivative of the terminal phase voltages regarding to a virtual neutral point. For starting-up the motor and implementing the algorithms of the detection technique, a FPGA board with a real-time processor is used. Also, a versatile hardware has been developed for driving BLDC motors through pulse width modulation (PWM) signals. Delta and wye winding motors have been considered for evaluating the performance of the designed hardware and software, and tests with and without load are performed. Experimental results for validating the detection technique were attained in the range 5-1500 rpm and 5-150 rpm under no-load and full-load conditions, respectively. Specifically, speed and position square errors lower than 3 rpm and between 10º-30º were obtained without load. In addition, the speed and position errors after full-load tests were around 1 rpm and between 10º-15º, respectively. These results provide the evidence that the developed technique allows to detect the position and speed of BLDC motors with low accuracy errors at starting-up and over a wide speed range, and reduce the influence of noise in position sensing, which suggest that it can be satisfactorily used as a reliable alternative to position sensors in precision applications.

Robust concurrent topology optimization of multiscale structure under load position uncertainty

  • Cai, Jinhu;Wang, Chunjie
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.529-540
    • /
    • 2020
  • Concurrent topology optimization of macrostructure and microstructure has attracted significant interest due to its high structural performance. However, most of the existing works are carried out under deterministic conditions, the obtained design may be vulnerable or even cause catastrophic failure when the load position exists uncertainty. Therefore, it is necessary to take load position uncertainty into consideration in structural design. This paper presents a computational method for robust concurrent topology optimization with consideration of load position uncertainty. The weighted sum of the mean and standard deviation of the structural compliance is defined as the objective function with constraints are imposed to both macro- and micro-scale structure volume fractions. The Bivariate Dimension Reduction method and Gauss-type quadrature (BDRGQ) are used to quantify and propagate load uncertainty to calculate the objective function. The effective properties of microstructure are evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The bi-directional evolutionary structural optimization (BESO) method is used to obtain the black-and-white designs. Several 2D and 3D examples are presented to validate the effectiveness of the proposed robust concurrent topology optimization method.

The effects of knee joint position sense following local and general load protocols (국소적 부하와 전신적 부하가 슬관절 위치 감각에 미치는 영향)

  • Hwang, Yoon-Tae;Park, Rae-Joon;Choi, Jin-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.3
    • /
    • pp.429-440
    • /
    • 2005
  • The purpose of this study was to compare the effects of knee joint position sense following local and general load protocols in 25 healthy male subjects. Proprioception of the knee joint was evaluated by measuring absolute angular errors at matching angles before, after and between 2 different types of load protocols. Proprioception tests(on the dominant knee) were performed in which proprioception of the passivepassive reproduced and active-active reproduced knee position was measured. Local load was provided with maximum isokinetic knee extension-flexion on the isokinetic dynamometer(Cybex), and general load was 10 minutes running on a treadmill. Peak torque(knee extension and flexion) and heart rate(beats per minute) was evaluated as an indicator of local and general fatigue during load protocols. The results were as follows: 1. For pasive-pasive reproduced knee position test, significant difference in absolute angular errors after general load protocol was detected compared with that before general load protocol(P<.05), significant difference in absolute angular errors after local load protocol was detected compared with that before local load protocol(P<.05). However, no significant difference in absolute angular errors of general load protocol was detected compared with that of local load protocol (P>.05), no significant difference in absolute angular errors of local load protocol was detected compared with that of general load protocol(P>.05). 2. For active-active reproduced knee position test, significant difference in absolute angular errors after general load protocol was detected compared with that before general load protocol(P<.05), significant difference in absolute angular errors after local load protocol was detected compared with that before local load protocol (P<.05). Also, significant difference in absolute angular errors of general load protocol was detected compared with that of local load protocol(P<.05), significant difference in absolute angular errors of local load protocol was detected compared with that of general load protocol(P<.05). 3. A significant decrease of peak torque of knee extensors and flexors was seen after local load, although heart rate was significantly increased(P<.05). No significant change of peak torque of knee extensors and flexors was seen after general load(P>.05), although heart rate was also significantly increased(P<.05). The previous study revealed that knee proprioception is significantly altered when the muscle mechanoreceptors are dysfunctional due to muscle fatigue, although the joint mechanoreceptors have no significantly effect on knee proprioception when the presence of knee muscle fatigue. However, the results of this study are different from those of the previous study in that muscle weakness of the knee could not be seen after general load. This study shows that general load may diminish motor control by the central nervous system. Proprioceptional decline without muscle weakness of knee after general load suggests a change in the proprioceptional pathway without influence from muscle mechanoreceptors.

  • PDF