• Title/Summary/Keyword: Load Interaction Effect

Search Result 277, Processing Time 0.03 seconds

Damage Estimation for Offshore Tubular Members Under Quasi-Static Loading (준정적하중(準靜的荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상예측(損傷豫測))

  • Paik, Jeom-K.;Shin, Byung-C.;Kim, Chang-Y.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-93
    • /
    • 1989
  • The present study attempts to develop the theoretical model for the damage estimation of offshore tubular members which are subjected to the accidental impact loads due to collision, falling objects and so on. For the reasons of the simplicity of the problem being considered, however, this paper postulates that the accidental load can be approximated to be the quasi-static one, in which dynamic effects are negelcted. Based upon the theoretical and experimental results which are obtained from the present study as well as the existing literature, the load-displacement relations taking the interaction effect between the local denting and the global bending deformation into account are presented in the explicit form when the concentrated lateral load acts on the tubular member whose end condition is supposed to be rotation ally free and axially restrained, in which membrane forces develop. Thus, the practical estimation of damage deformation for the local denting and the global bending damage of tubular members against the accidental loads is possible and also the collision absorption capability of the member can be calculated by performing the integration of the area below the given load-displacement curves, provided that all the energy is dissipated to the deforming the member itself.

  • PDF

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.

A Study on the Reduction of the Sloshing of Storage Tank Using Wing and Diaphragm Baffle (날개형 및 격막형 배플을 이용한 유체저장탱크 내부의 슬로싱 저감 연구)

  • Lee, Young-Shin;Kim, Hyun-Soo;Lee, Jae-Hyung;Kim, Young-Wann;Ko, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2039-2046
    • /
    • 2003
  • Storage tank filled with fluid has unique dynamic characteristics compared to general structures, due to the interaction between fluid and structure. The oscillation of the fluid surface caused by external forces is called sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircrafts, and liquid missles. In this study, the evaluation method for the reduction of sloshing, the optimized size and location of wing and diaphragm baffles are suggested based on the experimental results. The experimental device can simulate the translation motion. A rectangular tank and various baffles are fabricated to study on the sloshing characteristics. The forces measured using the load cell at tank wall and those are compared with each other through the Fourier transformation for various conditions. The study of the sloshing of the rectangular tank equipped with baffles is conducted under the same conditions with non-baffled rectangular tank experiment. From the experimental results, the sloshing reduction effect by the baffles is observed. In conclusion in case of diaphragm baffles, the optimized size ratio of the width of baffle to the water height is 0.44 and the installation location has no effect to the damping of sloshing. In case of wing baffles, the optimized size ratio of the width of baffle to the length of a rectangular tank is 0.1 and the optimized location ratio of the baffle to the water height is 0.9.

Dynamic Analysis of Prestressed Liquid Storage Tanks Considering Fluid Effect (유체의 영향을 고려한 프리스트레스트 액체저장 탱크의 동적해석)

  • 황철성;백인열
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.71-82
    • /
    • 1999
  • An axisymmetric shell element which includes the effects of the meridional and circumferential cable prestresses is developed. The fluid-structure interaction is expressed as added mass effect which is in proportion to the acceleration of the structure in interface surface. The added mass is obtained by using finite element method under the assumption that the fluid is invicid, incompressible and irrotational. It is coded for personal computer by the maximum use of axisymmetic properties and the dynamic analysis are performed under seismic exitations. A ring element makes the characteristics of the axisymmetric shell to be fully utilized. The elgenvalue solutons under the initial prestresses and the internal fluid are well agreed with the exact solutions and references by using under 20 elements. The eigenvalues are decreased along the increasing the height of internal fluid and these effects are dominant under the lower wave numbers. The results of the seismic analysis show that the radial deflection under the meridional prestress is a little larger than that under the circumferential prestress.

  • PDF

Effect of Check Valve Characteristics on Flow Rate of the Small Piezoelectric-Hydraulic Pump (체크밸브 특성이 소형 압전유압펌프 유량에 미치는 효과)

  • Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Hwang, Yong-Ha;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.54-68
    • /
    • 2018
  • The objective of this study is to analyze the effect of dynamic characteristics of the check valve applied to the small piezoelectric-hydraulic pumps on flow rate formation. The flow rate of the piezoelectric-hydraulic pump is a key factor in the formation of the load pressure to operate the brake system. At this time, the natural frequency of the check valve operating in the fluid has a great influence on the formulation of the flow rate of the piezoelectric-hydraulic pump. In addition, the natural frequency of the check valve is affected by the gap between the check valve and the pump seat. In this study, the natural frequency of the check valve according to the gap between the check valve and the pump seat was calculated through the fluid-structure interaction analysis. The flow rate obtained from the simulation result was verified by comparing it with the result from the flow rate experiment using the developed piezoelectric-hydraulic pump.

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

The Effect Analysis of Postural Stability on the Inter-Segmental Spine Motion according to Types of Trunk Models in Drop Landing (드롭착지 동작 시 체간모델에 따른 척추분절운동이 자세안정성 해석에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • The purpose of this study was to assess the inter-segmental trunk motion during which multi-segmental movements of the spinal column was designed to interpret the effect of segmentation on the total measured spine motion. Also it analyzed the relative motion at three types of the spine models in drop landing. A secondary goal was to determine the intrinsic algorithmic errors of spine motion and the usefulness of such an approach as a tool to assess spinal motions. College students in the soccer team were selected the ten males with no history of spine symptoms or injuries. Each subject was given a fifteen minute adaptation period of drop landing on the 30cm height box. Inter-segmental spine motion were collected Vicon Motion Capture System (250 Hz) and synchronized with GRF data (1000 Hz). The result shows that Model III has a more increased range of motion (ROM) than Model I and Model II. And the Lagrange energy has significant difference of at E3 and E4 (p<.05). This study can be concluded that there are differences in the three models of algorithm during the phase of load absorption. Especially, Model III shows proper spine motion for the inter-segmental joint motion with the interaction effects using the seven segments. Model III shows more proper observed values about dynamic equilibrium than Model I & Model II. The findings have shown that the dynamic stability strategy of Model III toward multi-directional spinal motion supports for better function of the inter-segmental motor-control than the Model I and Model II.

The Effect of e-Learning Contents' Information Presentation Method on Teaching Presence and Academic Achievement (e-러닝 콘텐츠의 정보제시방식이 교수실재감 및 학업성취도에 미치는 효과)

  • Kim, Jinha;Kim, Kyunghee;Lee, Seongju
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.3
    • /
    • pp.79-87
    • /
    • 2019
  • This study examined the effect of e-learning contents with different dual-coding, media-richness, and cognitive-load degree on learning. To do so, after dividing summary and explanation presentation methods in e-learning contents according to information's quantity and kind, the effects on teaching presence and academic achievement were examined. The summary presentation method was produced as text type and text+illustration type and the explanation presentation method as audio type and audio+video type. The results of this study are as follows. First, in the summary method, the text+illustration type had significantly higher teaching presence than text type. Second, in the explanation method, the audio type was found to be significantly higher than the audio+video type. Third, the interaction between the summary method and explanation method was found to be significant in teaching presence and academic achievement.

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading

  • Himeur, Nabil;Mamen, Belgacem;Benguediab, Soumia;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bouchouicha, Benattou;Bourada, Fouad;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.353-369
    • /
    • 2022
  • This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.

Hydrodynamic Motion and Structural Performance of Concrete Floating Structure by Length Using Numerical Analysis (수치해석을 통한 콘크리트 부유구조체 길이에 따른 운동 및 구조성능 검토)

  • Lee, Du-Ho;You, Young-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • In the present study, numerical analysis was performed for hydrodynamic motion and structural performance on four different concrete floating structures, which have same cross-section but different length. The hydrodynamic analysis of floating structures is carried out using ANSYS AQWA with the different 34 wave load on regular wave period from three seconds to ten seconds in 35 m water depth. In order to evaluate structural performance of floating structures under the critical wave load which obtained from hydrodynamic analysis. The integrated analysis is also carried out through the mapping method, which can directly connect the wave-induced hydraulic pressure obtained form ANSYS AQWA to Finite Element Model in ANSYS Mechanical. As a results of this study, the hydrodynamic motion of floating structures is decreased as the length of structure increased. It means that the effect of wave-structure interaction is strongly dependent on the relationship between a wave period and a length of structure. Moreover, it is found that tension stress on bottom slab of floating structure is occurred by the critical wave load, the sectional force is not influenced by length of a structure.