• Title/Summary/Keyword: Load Combination

Search Result 702, Processing Time 0.03 seconds

Development of a Fleet Management System for Cooperation Among Construction Equipment (건설장비 협업을 위한 플릿관리 시스템 개발)

  • Ahn, Seo-Hyun;Kim, Sung-Keun;Lee, Kwan-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.573-586
    • /
    • 2016
  • In construction jobs, a combination of various kinds of machinery is used to perform earthworks at a large-scale site. Individual equipments essentially cooperate with each other on task such as excavation, load, transfer and compaction. While other area have studied cooperation system, related study in domestic construction is in poor condition. In this study, construction equipment fleet management system is developed for solving this problem and find way to improving efficiency in earthworks site. The entire concept of the fleet management system, including its components and process, has been systematically outlined in this paper. An operational methodology has also been suggested, where a number of machines, such as the excavators, trucks and compactors, are chosen and further grouped into a cluster. A case study verify fleet management system's effectiveness on performing task package by comparing existing work method with methodology in this study. Fleet management system in this study is expected to curtail fuel consumption by the reduction of working time and moving distance. Furthermore, it can be anticipated to declining carbon emission effect.

A selective sparse coding based fast super-resolution method for a side-scan sonar image (선택적 sparse coding 기반 측면주사 소나 영상의 고속 초해상도 복원 알고리즘)

  • Park, Jaihyun;Yang, Cheoljong;Ku, Bonwha;Lee, Seungho;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • Efforts have been made to reconstruct low-resolution underwater images to high-resolution ones by using the image SR (Super-Resolution) method, all to improve efficiency when acquiring side-scan sonar images. As side-scan sonar images are similar with the optical images with respect to exploiting 2-dimensional signals, conventional image restoration methods for optical images can be considered as a solution. One of the most typical super-resolution methods for optical image is a sparse coding and there are studies for verifying applicability of sparse coding method for underwater images by analyzing sparsity of underwater images. Sparse coding is a method that obtains recovered signal from input signal by linear combination of dictionary and sparse coefficients. However, it requires huge computational load to accurately estimate sparse coefficients. In this study, a sparse coding based underwater image super-resolution method is applied while a selective reconstruction method for object region is suggested to reduce the processing time. For this method, this paper proposes an edge detection and object and non object region classification method for underwater images and combine it with sparse coding based image super-resolution method. Effectiveness of the proposed method is verified by reducing the processing time for image reconstruction over 32 % while preserving same level of PSNR (Peak Signal-to-Noise Ratio) compared with conventional method.

ANALYSIS OF THE TRANSPORTATION LOGISTICS FOR SPENT NUCLEAR FUEL IN KOREA

  • Lee, Hyo-Jik;Ko, Won-Il;Seo, Ki-Seok
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.582-589
    • /
    • 2010
  • As a part of the back-end fuel cycle, transportation of spent nuclear fuel (SNF) from nuclear power plants (NPPs) to a fuel storage facility is very important in establishing a nuclear fuel cycle. In Korea, the accumulated amount of SNF in the NPP pools is troublesome since the temporary storage facilities at these NPP pools are expected to be full of SNF within ten years. Therefore, Korea cannot help but plan for the construction of an interim storage facility to solve this problem in the near future. Especially, a decision on several factors, such as where the interim storage facility should be located, how many casks a transport ship can carry at a time and how many casks are initially required, affect the configuration of the transportation system. In order to analyze the various possible candidate scenarios, we assumed four cases for the interim storage facility location, three cases for the load capacity that a transport ship can carry and two cases for the total amount of casks used for transportation. First, this study considered the currently accumulated amount of SNF in Korea, and the amount of SNF generated from NPPs until all NPPs are shut down. Then, how much SNF per year must be transported from the NPPs to an interim storage facility was calculated during an assumed transportation period. Second, 24 candidate transportation scenarios were constructed by a combination of the decision factors. To construct viable yearly transportation schedules for the selected 24 scenarios, we created a spreadsheet program named TranScenario, which was developed by using MS EXCEL. TranScenario can help schedulers input shipping routes and allocate transportation casks. Also, TranScenario provides information on the cask distribution in the NPPs and in the interim storage facility automatically, by displaying it in real time according to the shipping routes, cask types and cask numbers that the user generates. Once a yearly transportation schedule is established, TranScenario provides some statistical information, such as the voyage time, the availability of the interim storage facility, the number of transported casks sent from the NPPs, and the number of transported casks received at the interim storage facility. By using this information, users can verify and validate a yearly transportation schedule. In this way, the 24 candidate scenarios could be constructed easily. Finally, these 24 scenarios were compared in terms of their operation cost.

Tilting Train-induced Roadbed Response on the Conventional Line (틸팅열차 주행시 기존선 흙 노반의 응답특성)

  • Koh, Tae-Hoon;Kwak, Yeon-Suk;Hwang, Seon-Keun;SaGong, Myung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.433-441
    • /
    • 2011
  • It is a fact that the straightening of track alignment is one of the undoubted ways to improve the train speed on conventional lines, while that requires huge investment resources. Therefore, the operation of a tilting train as well as the minimum improvement of track is suggested as an effective and economical alternative way for the speed-up of conventional lines. Since a driving mechanism of tilting train is different from those of existing trains, in order to make sure its operation safety and stability on conventional line, the performance of track and roadbed must be preferentially evaluated on the conventional line. Furthermore, it is necessary to estimate the tilting-train-induced roadbed response in detail since the roadbed settlement can lead to the track deformation and even derailment. In this research, the patterns of wheel load and lateral force were monitored and analyzed through the field tests, and the derailment coefficient and degree of wheel off-loading were calculated in order to evaluate the tilting train running safety depending on the running speeds (120km~180km) on the conventional line. Moreover, roadbed pressure, settlement and acceleration were also observed as tilting-train-induced roadbed responses in order to estimate the roadbed stability depending on the running speeds. Consequently, the measured derailment coefficient and degree of wheel off-loading were satisfied with their own required limits, and all of the roadbed responses were less than those of existing high-speed train (KTX) over an entire running speed range considered in this study. As a result of this study, the tilting train which will be operated in combination with existing trains is expected to give no adverse impact on the conventional line even with its improved running speed.

A Study on the Shear Bond Strength of Veneering Ceramics to the Lithium Disilicate (IPS e.max CAD) Core (Lithium Disilicate (IPS e.max CAD) 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2013
  • The purpose of this study was to investigate the shear bond strength between various commercial all-ceramic system core and veneering ceramics, and evaluate the clinical stability by comparing the conventional metal ceramic system. The test samples were divided into three groups: Ni-Cr alloy (metal bond), yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP) (zirconia bond), lithium disilicate (lithium disilicate bond). The veneering porcelain recommended by the manufacturer for each type of material was fired to the core. After firing, the specimens were subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.50 mm/min until failure. Average shear strengths (mega pascal) were analyzed with a one-way analysis of variance and the Tukey test (${\alpha}$=0.05). The mean shear bond strength${\pm}$SD in MPa was $44.79{\pm}2.31$ in the Ni-Cr alloy group, $28.32{\pm}4.41$ in the Y-TZP group, $15.91{\pm}1.39$ in the Lithium disilicate group. The ANOVA showed a significant difference among groups (p<0.05). None of the all-ceramic system core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Position Control of a Pneumatic Cylinder Actuator using PLC and Proximity Sensors (공압 실린더 액츄에이터 위치제어)

  • Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won;Park, Jong-Min;Kwon, Soon-Goo;So, Jung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • The fluid power products are widely used in current industrial area such as automation of products and equipment assembly, high-tech machine tool, aircraft, train, and etc. As the development of industry is in progress, the development of the fluid power products is demanding and it is required in every industrial area. This research proposed a pneumatic system to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the valve system. The pneumatic system consisted of a combination of pneumatic actuator, four two-port valves, two three-port valves, two pressure valve, a check valve, two proximity sensors, and a program logic controller (PLC). The position controller is based on the PLC connected with the proximity sensors. The maximum air pressure applied for tests was $49.05N/cm^2$ and the displacement accuracy of a stroke was measured using a dial gauge. The supply- and discharge-side of air pressure and the length of the stroke of the pneumatic cylinder were varied The test of the position control of the pneumatic cylinder was carried out 50 times at each supply- and discharge-side air pressure of 24.53/34.34, 29.43/39.24, 34.34/44.15, and $39.24/49.05N/cm^2$ and replicated three times. The accuracy of the displacement of the pneumatic cylinder stroke increased as the supply- and discharge-side of air pressure increased with the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with the fixed supply- and discharge-side of air pressure of the pneumatic cylinder as 34.34 and $44.15N/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder was obtained at the supplyand discharge-side of air pressure of 39.24 and $49.05N/cm^2$, respectively, and strokes of 170 and 190mm.

Continuity for Double Tee Slabs (더블티 슬래브의 연속화)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • The main objective of this study is to develop a continuity of double tee slab with two modified dap-ends to solve the problems of excessive moment, slab depth, deflection, and joint cracking in the original simply supported double tee slab systems. The modified joint is produced in a combination with two slabs with modified dap and one rectangular beam. The modified joint can be justified as following different merits. The span capacity for a design load is increased, while the deflection of the slab is decreased due to the decrease of positive moment at the center span of the slab. The joint cracking between slab and beam, which occur frequently in the original slab systems of double tee will be reduced. No more additional form work is needed to cast topping concrete for continuity. Three point loading tests are performed on the specimens with a variable of an amount of main longitudinal reinforcement to evaluate flexural and shear behavior. Following conclusions are obtained from the experimental investigation. The continuity of double tee slab effectively is provided by placing longitudinal steel reinforcement in the topping concrete over the connection, and generally leads to an increase in span capacity of double tee slabs with reduced deflection. It is more effective to control the initial cracking at the connection than that of some simply supported double tee slab systems.

A Study on the Landscape adjective characteristics for the Major Landscape Elements in Organic farming (유기농업단지 주요경관요소의 경관형용사 특성에 관한 연구)

  • An, Phil-Gyun;Eom, Sung-Jun;Kim, Nam-Chun;Kim, Sang-Bum
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.4
    • /
    • pp.69-84
    • /
    • 2020
  • Up to date, the majority research on the major landscape elements in organic farming has been mainly focused on the practice of seeking efficiency. The problem is that this type of study contributes to polluting the agricultural environment and damaging the ecological circulation system. As an alternative, there is a growing body of research on organic farming, but it is not widely applied that research on how to manage the landscape considering the scenic characteristics of farming villages practicing organic farming. Hence, in this paper we utilized landscape adjectives as a way to enhance the objectivity of the organic agricultural complex landscape assessment. More specifically, not only this study used a landscape image of an organic agricultural complex to identify a landscape adjective suitable for the landscape elements but also this study confirmed the suitability of landscape adjectives comparing to the opinions of experts and the public. To carry out, this study performed the experts survey which is composed of 12 major landscape elements, including rice paddies and fields, monoculture and diverse crops, dirt roads, windbreak trees, accent planting, dum-bung(small pond), natural small river, natural waterways, plastic film houses, one-storied houses, and pavilion. As a result of deriving the landscape adjectives from the main landscape elements, there were nine landscape adjectives that were consistent with experts and the public, including "clear" and "Artless" for rice paddies and fields, while the mismatched landscape adjectives were 'traditional'. The accent planting was a combination of landscape adjectives such as 'natural' and 'clear', while the windbreak trees was a consensus of all landscape adjectives. Only two adjectives, 'friendly' and 'wild', agreed on the dirt load, nine dum-bung(small pond), ten natural small river, nine duckery, eight one-storied houses, 10 pavilion, eight monoculture and diverse crops, and three natural waterways. The most common landscape adjectives were windbreak trees, pavilions, and natural small river, all 10 landscape adjectives. However, it is considered that only three of the 10 landscape types on the dirt road and the natural number are matched. Thus, additional management measures will be needed. In addition, it was analyzed that the most common landscape adjectives were "Artless" and "friendly" 13 times. The landscape adjectives of the organic farming complex responded by experts were analyzed to be suitable for natural, clear, zingy, silent, traditional, artless, friendly, wild and Leisurely, and consistent with the general public's opinion.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.