• Title/Summary/Keyword: Load Capacity

Search Result 4,615, Processing Time 0.036 seconds

An Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and High-Axail Force (고축력과 반복횡력을 받는 고강도 R/C기둥의 횡보강근 효과)

  • 신성우;안종문
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.3-10
    • /
    • 1999
  • Earthquake resistant R/C frame structures are generally designed to prevent the columns from plastic hinging. R/C columns under higher axial load or strong earthquake showed a brittle behavior due to the deterioration of strength and stiffness degradation. An experimental study was conducted to examine the behavior and to find the relationship between amounts of lateral reinforcements and compressive strength of ten R/C column specimens subjected to reversed cyclic lateral load and higher axial load. Test results are follows : An increase in the amount of lateral reinforcement results in a significant improvement in both ductility and energy dissipation capacities of columns. R/C columns with sub-tie provide the improved ductility capacity than those with closely spaced lateral reinforcement only. While the load resisting capacity of the high strength R/C columns is higher than the normal strength concrete columns under both an identical ratio of lateral reinforcement, however the ductility capacity of high strength R/C columns is decreased considerably. Therefore, the amounts of lateral reinforcement must be designed carefully to secure the sufficient ductility and economic design of HSC columns under higher axial load.

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.

Characteristics of Forming toad in Forward and Backward Can Extrusion Processes (전ㆍ후방 캔 압출공정의 성형하중특성)

  • Choi H. J;Ham B. S;Ok J. H;Shim J. H;Kim S. H;Hwang B. B
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.689-695
    • /
    • 2004
  • This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion process. The analysis in this paper is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can part with different outer diameters are categorized to investigate quantitatively the forming load, forming energy and maximum pressure exerted on the die-material interface. The categorized processes are composed of combined and/or some basic extrusion processes. After the analysis of the forming load characteristics, the frame capacity of press suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is also suggested that different load capacities be selected for different dimensions of a part such as the wall thickness in forward direction. The work in this paper could be a good reference for analysis of complex extrusion and selection of proper frame capacity of press to achieve low production cost and thus high productivity.

A Study on the Load Sharing Ratio and the Settlement of Prebored Open-Ended Steel Pipe Piles (매입 개단 강관말뚝의 하중분담률과 침하량 분석 연구)

  • Chea min Kim;Ki hwan Kim;Do kyun Yoon;Youngkyu Choi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2023
  • The bearing capacity of the prebored pile has been studied by many researchers. However, The bearing capacity of the prebored pile has been studied by many researchers. However, comparative studies between design data and pile load test data on the load sharing ratio and the settlement were insignificant. Therefore, the design data and the static load test results were compared for the prebored open-end steel piles. In the compressive static pile load test, the load sharing ratios of the base resistance and the shaft resistance were 13%~40% and 60%~87%, respectively and the settlements were measured 2.2mm~4.7mm. In the current bearing capacity calculation formula, the base resistance was shared between 54% and 75%, and the shaft resistance was shared between 25% and 46% and the settlements were calculated about 19.8mm~23.6mm. The settlement in the current bearing capacity calculation formula was 321% to 776% (average : 445%) larger than the settlement in the result of load test. When the settlement were calculated using the load sharing ratio in the pile load tests, it was 137% to 525% larger than the test settlement, and it was as large as 204% on average. It was confirmed that an appropriate evaluation of the load sharing ratio had an important effect on the calculation of pile settlement.

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

Behavior of Model Sheet Piles under Vertical Loads (수직하중을 받는 모형 강널말뚝의 거동)

  • 윤여원;김두균
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-16
    • /
    • 1998
  • In order to study the behavior of the sheet pile under vertical load in sands, model pile tests using calibration chamber are performed. For this research, five model piles, with the same section area and different degree of inclination of flange, were made. And model pile tests were conducted for each of these piles with different relative density and direction of applied load. For model pile which has the same shape, compression capacity is about 100% higher than pullout capacity and the difference increases with increasing relative density. Pullout ultimate capacity and corresponding displacement increase with increasing relative density and the pullout capacities remained almost the same irrespective of the inclination of flanges for the same density. The ultimate capacity under compression load is highest at 30$^{\circ}$ of inclination of flanges and the trend is more evident with increasing relative density. From the analysis of load distribution, the higher loading capacity at 30$^{\circ}$ of inclination of flanges with same section area may be attributed to the partial soil plug between flanges.

  • PDF

Load Bearing Capacity Evaluation of New Lattice Girder by Laboratory Test Techniques (실내평가기법에 의한 새로운 격자지보재의 하중지지력 평가)

  • Choi, Young-Nam;Kim, Dong-Gyou;Bae, Gyu-Jin;Jang, Yeon-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.666-672
    • /
    • 2010
  • Load bearing capacity of new lattice girder has been evaluated with optimized spider for lattice girder utilized in the construction of tunnels. This newly developed lattice girder is different from existing lattice girder as its design is associated with existing spider with newly developed 2 types of form. The spacing of lattice girder's spider is linked with the weight and it decides the unit cost and construction therefore, different spacing of the developed spider has been produced to evaluate the measurement of load bearing capacity. As the result of the tests by producing the spacing of spider as 0cm and 4cm for developed lattice girder-2, the load bearing capacity of 0cm with spacing of 21%, and 4cm with 25% of increase when they are compared with the existing lattice girder, and the weight of specimen was decreased. As the result of the tests by producing the spacing of 1cm and 6cm for developed lattice girder-3, the spacing of 1cm with 42%, and the spacing of 6cm with 11% of increase which presented higher load bearing capacity in all newly developed forms, and there was a certain degree of increase in weight in case of 1cm of spacing. The result of evaluation regarding on the displacement by applying the evaluation method suggested by the German Railroad administration, the entire specimens were found to satisfy all the evaluation standard suggested by the administration.

  • PDF

A Study on the Evaluation of Load Carrying Capacity of Highway Bridges based on Structural Reliability Methods (구조신뢰성(構造信賴性) 방법에 의한 도로교(道路橋)의 내하력(耐荷力) 평가(評價)에 관한 연구(硏究))

  • Shin, Jae Chul;Cho, Hyo Nam;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.107-120
    • /
    • 1987
  • This study is directed for the evolution of the rational approaches to the systematic evaluation of the load carrying capacity of bridges based on the practical and second moment reliability methods. A new approach for the evaluation of load carrying capacity of exsisting bridges is proposed in this study. The key idea behind this approach is in the fact that the load carrying capacity of an existing bridges under extreme traffic truck loadings may be measured by evaluating and classifying the reliability state of the bridge in terms of reliability index(${\beta}$). The rating formulas developed in this study are applied for the evaluation of load carrying capacity of the several actual deteriorated bridges inspected and tested for the capacity rating, and the results are compared with those calculated by using the current rating formulas. It may be concluded that the proposed rating formulas which is derived based on reliability methods, have to eventually replace the current rating formula when the basic statistical data for the resistance and load effects become available in the near future.

  • PDF