• 제목/요약/키워드: Load Capacity

검색결과 4,606건 처리시간 0.031초

A New Required Reserve Capacity Determining Scheme with Regard to Real time Load Imbalance

  • Park, Joon Hyung;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.511-517
    • /
    • 2015
  • Determination of the required reserve capacity has an important function in operation of power system and it is calculated based on the largest loss of supply. However, conventional method cannot be applied in future power system, because potential grid-connected distributed generator and abnormal temperature cause the large load imbalance. Therefore this paper address new framework for determining the optimal required reserve capacity taking into account the real time load imbalance. At first, we introduce the way of operating reserve resources which are the secondary, tertiary, Direct Load Control (DLC) and Load shedding reserves to make up the load imbalance. Then, the formulated problem can be solved by the Probabilistic Dynamic Programming (PDP) method. In case study, we divide two cases for comparing the cost function between the conventional method and the proposed method.

항타 및 매입말뚝의 하중-침하량 곡선의 분석 (Analysis of Load-Settlement Curves in Driven and Embedded Piles)

  • 천병식;조천환
    • 한국지반공학회지:지반
    • /
    • 제13권6호
    • /
    • pp.61-70
    • /
    • 1997
  • 매입말뚝공법으로 시공된 말뚝의 거동은 항타말뚝의 그것과는 다르고 또한 여기서 얻어지는 하중-침하량 곡선의 특성도 다름에도 불구하고 이에 대한 기본적인 고찰없이 항타공법에서 적용해 왔던 허용하중 결정방법을 그대로 매입말뚝공법에도 준용하고 있다. 국내의 관련기준에 의하면 허용지지력을 결정하는 방법들이 기준마다 서로 다르고 또한 적용 안전율도 차이가 있어 서로 상충되는 면이 있다. 본 논문에서는 106개 말뚝의 정재하시험을 통해 얻어진 하중-침하량 곡선을 분석하고 이들 결과를 공법별로 비교하였다. 분석결과 일정한 곡선을 기준하여 제시된 각종의 수학적 기법들은 허용지지력을 결정하기 위한 적절한 방법이 아님을 알 수 있었다. 또한 분석결과를 바탕으로 적절한 허용하중 판정방법 및 적용안전율을 제안하였다.

  • PDF

유한차분법을 이용한 말뚝의 하중전이특성 및 해석기법 (Analytical Technique and Load Transfer Features on Pile Using Finite Difference Method)

  • 한중근;이재호
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.10-21
    • /
    • 2006
  • For analyze of the bearing capacity, skin friction and settlements of pile on axial compressive loading, both Load transfer tests of pile and pile loading test in field have application to commonly before pile installing. A bearing capacity of pile was affected by the characteristics of surrounding ground of pile. Especially, that is very different because of evaluation of settlement due to each soil conditions of ground depths. The ground characteristics using evaluation of bearing capacity of pile through load transfer analysis depends on N values of SPT, and then a bearing capacity of pile installed soft ground and refilled area may be difficult to rational evaluation. An evaluation of bearing capacity on pile applied axial compressive loading was effected by strength of ground installed pile, unconfined compressive strength at pile tip, pile diameter, rough of excavated surface, confining pressure and deformation modules of rock etc and these are commonly including the unreliability due to slime occurred excavation works. Load transfer characteristics considered ground conditions take charge of load transfer of large diameter pile was investigated through case study applied load transfer tests. To these, matrix analytical technique of load transfer using finite differential equation developed and compared with the results of pile load test.

합성구조체의 경계면 슬립이 거동과 성능에 미치는 영향 (Effects of Slip for Interface on Behavior and Capacity in Hybrid Structure)

  • 정연주;정광회;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.385-390
    • /
    • 2001
  • This paper presents a nonlinear analysis technique with slip, the effects of slip modulus and composite action by shear connector on behavior and capacity in composite structure of sandwich system. As a results of this study, it proved that the slip modulus, in case of shear behavior, seldom influence load-resistance capacity such as yield and ultimate load, but in case of flexural behavior, it appropriately influence load-resistance capacity because of stress redistribution by slip. In case of flexural behavior, analysis result for perfect-composite results in over-estimation and perfect-slip results in under-estimation on behavior and capacity. Therefore, it is desirable to model steel-concrete interface with partial-composite. The effects of slip on behavior and capacity are less in case of positive composite than loosely composite, and it proved that composite action by shear connector improve the load-resistance capacity of this system.

  • PDF

벽식 구조체 적용을 위한 구조용단열패널 성능 평가 (Evaluation on Structural Performance of Structural Insulated Panels in Wall Application)

  • 나환선;이현주;이철희;황성욱;조혜진;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.19-27
    • /
    • 2012
  • Structural insulated panels, which are structurally performed panels consisting of a plastic insulation bonded between two structural panel facings are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. By now, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to suggest fundamental reports such as racking resistance, axial capacity, transverse load capacity, and lintel load capacity for SIPs. Test results showed that maximum load was 44.3kN, allowable load was 14.7kN for racking resistance, and that maximum load was 137.6kN, allowable load was 37.4kN/m for axial compression capacity. For transverse load capacity, test results showed $10.3kN/m^2$ of maximum load, $3.4kN/m^2$ of allowable load. For lintel load capacity for SIPs dependent to lengths, allowable loads were 20.4kN for 600mm long lintel, 23.9kN for 1,200mm long lintel, 19.3kN for 1,800mm long lintel, and 2,400mm long lintel had 14.1kN of allowable load. In the near future, when the allowable load for wall application is established, SIPs is considered to substitute the existent post-and-lintel construction to bearing wall structure.

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

우편집중국 수변전 설비 수용률 산정을 위한 새로운 부하 계산법 개발 (Development of a Novel Load Capacity Estimation Method for Demand Factor Calculation of a Mail Center)

  • 윤순만;정종찬;김광호
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.3-8
    • /
    • 2010
  • Recently, There have been many attempts to optimize energy usage in buildings and houses using Information Technology(IT) and the typical implementation can be found in Intelligent Building and Zero Energy Building. These kinds of buildings need to forecast the building loads, estimate the capacity requirement for power supply, and decide the capacity of the main transformer of the building. Currently, the capacity of the main transformer has been decided just using typical load estimation method not considering the load characteristics and patterns. In this paper, we propose a new load estimation method considering the load characteristics and patterns of the builiding. The proposed method was applied to actual mail center and verified the feasibility of application to actual design of buildings.

  • PDF

GFS로 성능향상된 교량 바닥판의 정적 보강효과 (A Experimental Study on the Static Strengthen Effect of Bridge Deck Strengthened with GFS)

  • 심종성;오홍섭;류승무;박성재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.739-744
    • /
    • 2001
  • The concrete bridge deck is quitely required to be replaced or strengthened due to decreasing load carrying capacity. In this study, to increase load capacity of the reinforced concrete slab, bridge deck is reinforced with the glass fiber sheets. they are examined on the strengthen effect and the static behavior, This paper considers relation of load-displacement and strain-distance. The static behavior of the slab strengthened is represented to maximum load. Owing to that, they are examined on increasing load carrying capacity of reinforced bridge deck and strengthen effect about on the crack.

  • PDF

싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구 (A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining)

  • 신휴성;김동규;장수호;배규진
    • 한국터널지하공간학회 논문집
    • /
    • 제8권3호
    • /
    • pp.273-287
    • /
    • 2006
  • 본 연구에서는 숏크리트 라이닝과 2차 콘크리트 라이닝 사이에 방수막으로 분리된 기존 이중구조의 터널 라이닝과 터널 라이닝 단면상에 전단력 전달을 저해하는 장치를 포함하지 않은 일체화 싱글쉘 구조의 터널 라이닝의 파괴양상 및 하중 지지성능에 관해 고찰한다. 하중지지력 평가를 위하여 우선적으로 수치해석적인 사전 평가가 실시되었으며, 새롭게 고안된 실대형 터널 라이닝 하중재하 실험이 실시되었다. 이때, 이완하중이나 암괴하중을 모사하기 위해 터널 천단부 집중하중이 고려되었다. 본 연구를 통하여, 동일한 터널라이닝 강도 관리기준에서 이중구조 라이닝보다 싱글쉘 라이닝 구조가 약 20%정도 높은 지지력을 보였으며, 다중 숏크리트 타설 단계마다 고성능 첨가재료 투입량의 조절로 복합재료 싱글쉘 라이닝 구조를 형성함으로써 보다 적은 고성능화 첨가재료 투입량으로 유사한 지지성능을 확보할 수 있는 가능성을 보였다.

침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구 (A Study for the Development of Pile Design Method Considering Settlement and Compression)

  • 임종석;하혁;정상균
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF